Abstract

The flamelet model is a commonly used tool for turbulent combustion simulations in the engineering field due to its computational efficiency and compatibility with complex chemical reaction mechanisms. Despite being widely used for decades, the flamelet model still faces challenges when applied to complex flame configurations, such as partially premixed flames, inhomogeneous inlets, supersonic combustion, or multiphase combustion. The principal challenges are posed by the uncertainty of the presumed shapes for probability density functions (PDFs) of the flamelet tabulation variables and the coupled process of turbulent diffusion and chemical reaction in turbulent combustion. Recent progress is reviewed from the viewpoint of the reaction manifold, with connections made to other combustion models, as well as the determination of joint (or conditional) PDFs for flamelet manifold parameters (e.g., progress variable, scalar dissipation rates, etc.). Promising improvements have been outlined in computational efficiency and the accuracy of predicted variable fields in simulating complex combustion systems (such as turbulent inhomogeneous combustion, combustion with multi-regime modes, and two-phase combustion). Advances in computational resources, direct numerical simulation data, artificial intelligence, stochastic simulation methods, and other dimension-reduction combustion models will contribute to the development of more accurate and efficient flamelet-like models for engineering applications.

References

1.
Yang
,
Y.
,
Zhu
,
T.
,
Yan
,
Z.
,
Li
,
Q.
,
Liu
,
B.
,
Wang
,
J.
, and
Huang
,
Z.
,
2023
, “
A Study on Combustion Characteristics of Insensitive Triple-Base Propellant
,”
Appl. Sci.
,
13
(
9
), p.
5462
.
2.
Zhang
,
M.
,
Wang
,
J.
, and
Huang
,
Z.
,
2023
, “
Analysis of Pressure Effect on Three-Dimensional Flame Surface Density Estimation
,”
Appl. Sci.
,
13
(
8
), p.
4691
.
3.
Szpica
,
D.
,
2023
, “
Combustion Systems and Fuels Used in Engines—A Short Review
,”
Appl. Sci.
,
13
(
5
), p.
3126
.
4.
Spalding
,
D. B.
,
1971
, “
Mixing and Chemical Reaction in Steady Confined Turbulent Flames
,”
Symposium (International) on Combustion
,
13
(
1
), pp.
649
657
.
5.
Magnussen
,
B. F.
, and
Hjertager
,
B. H.
,
1977
, “
On Mathematical Modeling of Turbulent Combustion With Special Emphasis on Soot Formation and Combustion
,”
Symposium (international) on Combustion
,
16
(
1
), pp.719–729.
6.
Magnussen
,
B. F.
,
1981
, “
On the Structure of Turbulence and a Generalized Eddy Dissipation Concept for Chemical Reaction in Turbulent Flow
,”
19th Aerospace Sciences Meeting
, pp.
1
42
.
7.
Pope
,
S.
,
1985
, “
PDF Methods for Turbulent Reactive Flows
,”
Prog. Energy Combust. Sci.
,
11
(
2
), pp.
119
192
.
8.
Zhou
,
L. X.
,
Qiao
,
L.
,
Chen
,
X.
, and
Zhang
,
J.
,
2002
, “
A USM Turbulence-Chemistry Model for Simulating NOx Formation in Turbulent Combustion
,”
Fuel
,
81
(
13
), pp.
1703
1709
.
9.
Klimenko
,
A. Y.
,
1990
, “
Multicomponent Diffusion of Various Admixtures in Turbulent Flow
,”
Fluid Dyn.
,
25
(
3
), pp.
327
334
.
10.
Bilger
,
R. W.
,
1993
, “
Conditional Moment Closure for Turbulent Reacting Flow
,”
Phys. Fluids
,
5
(
2
), pp.
436
444
.
11.
Maas
,
U.
, and
Pope
,
S. B.
,
1992
, “
Simplifying Chemical Kinetics: Intrinsic Low-Dimensional Manifolds in Composition Space
,”
Combust. Flame
,
88
(
3–4
), pp.
239
264
.
12.
Keck
,
J. C.
, and
Gillespie
,
D.
,
1971
, “
Rate-Controlled Partial-Equilibrium Method for Treating Reacting Gas Mixtures
,”
Combust. Flame
,
17
(
2
), pp.
237
241
.
13.
Keck
,
J.
,
1990
, “
Rate-Controlled Constrained-Equilibrium Theory of Chemical Reactions in Complex Systems
,”
Prog. Energy Combust. Sci.
,
16
(
2
), pp.
125
154
.
14.
Hamiroune
,
D.
,
Bishnu
,
P.
,
Metgalchi
,
H.
, and
Keck
,
J.
,
1998
, “
Rate-Controlled Constrained Equilibrium Method Using Constraint Potentials
,”
Combust. Theory Model.
,
2
(
1
), pp.
81
94
.
15.
Janbozorgi
,
M.
,
Ugarte
,
S.
,
Metghalchi
,
H.
, and
Keck
,
J.
,
2009
, “
Combustion Modeling of Mono-Carbon Fuels Using the Rate-Controlled Constrained-Equilibrium Method
,”
Combust. Flame
,
156
(
10
), pp.
1871
1885
.
16.
Janbozorgi
,
M.
, and
Metghalchi
,
H.
,
2012
, “
Rate-Controlled Constrained-Equilibrium Modeling of H/O Reacting Nozzle Flow
,”
J. Propul. Power
,
28
(
4
), pp.
677
684
.
17.
Yu
,
G.
,
Metghalchi
,
H.
,
Askari
,
O.
, and
Wang
,
Z.
,
2018
, “
Combustion Simulation of Propane/Oxygen (With Nitrogen/Argon) Mixtures Using Rate-Controlled Constrained-Equilibrium
,”
ASME J. Energy Resour. Technol.
,
141
(
2
), p.
022204
.
18.
Yu
,
G.
,
Hadi
,
F.
,
Wang
,
Z.
, and
Metghalchi
,
H.
,
2020
, “
Review of Applications of Rate-Controlled Constrained-Equilibrium in Combustion Modeling
,”
J. Non-Equilibrium Thermodyn.
,
45
(
1
), pp.
59
79
.
19.
Peters
,
N.
,
1984
, “
Laminar Diffusion Flamelet Models in Non-Premixed Turbulent Combustion
,”
Prog. Energy Combust. Sci.
,
10
(
3
), pp.
319
339
.
20.
Williams
,
F. A.
,
1975
, “Recent Advances in Theoretical Descriptions of Turbulent Diffusion Flames,”
Turbulent Mixing in Nonreactive and Reactive Flows
,
Springer New York
,
Boston, MA
.
21.
Zhang
,
Y.
,
Xu
,
S.
,
Zhong
,
S.
,
Bai
,
X.-S.
,
Wang
,
H.
, and
Yao
,
M.
,
2020
, “
Large Eddy Simulation of Spray Combustion Using Flamelet Generated Manifolds Combined With Artificial Neural Networks
,”
Energy AI
,
2
, p.
100021
.
22.
Li
,
K.
,
Rahnama
,
P.
,
Novella
,
R.
, and
Somers
,
B.
,
2023
, “
Combining Flamelet-Generated Manifold and Machine Learning Models in Simulation of a Non-premixed Diffusion Flame
,”
Energy AI
,
14
, p.
100266
.
23.
Wang
,
K.
,
Ao
,
Y.
,
Zhao
,
K.
,
Zhou
,
T.
, and
Li
,
F.
,
2023
, “
Improving Film Cooling Efficiency With Lobe-Shaped Cooling Holes: An Investigation With Large-Eddy Simulation
,”
Appl. Sci.
,
13
(
7
), p.
4618
.
24.
Menter
,
F.
,
Hüppe
,
A.
,
Matyushenko
,
A.
, and
Kolmogorov
,
D.
,
2021
, “
An Overview of Hybrid RANS–LES Models Developed for Industrial CFD
,”
Appl. Sci.
,
11
(
6
), p.
2459
.
25.
Balabanov
,
R.
,
Usov
,
L.
,
Troshin
,
A.
,
Vlasenko
,
V.
, and
Sabelnikov
,
V.
,
2022
, “
A Differential Subgrid Stress Model and Its Assessment in Large Eddy Simulations of Non-premixed Turbulent Combustion
,”
Appl. Sci.
,
12
(
17
), p.
8491
.
26.
Sessarego
,
M.
,
Shen
,
W. Z.
,
Van der Laan
,
M. P.
,
Hansen
,
K. S.
, and
Zhu
,
W. J.
,
2018
, “
CFD Simulations of Flows in a Wind Farm in Complex Terrain and Comparisons to Measurements
,”
Appl. Sci.
,
8
(
5
), p. 788.
27.
Mahmoud
,
R.
,
Jangi
,
M.
,
Ries
,
F.
,
Fiorina
,
B.
,
Janicka
,
J.
, and
Sadiki
,
A.
,
2019
, “
Combustion Characteristics of a Non-premixed Oxy-Flame Applying a Hybrid Filtered Eulerian Stochastic Field/Flamelet Progress Variable Approach
,”
Appl. Sci.
,
9
(
7
), p.
1320
.
28.
Liu
,
S.
,
Yin
,
H.
,
Xiong
,
Y.
, and
Xiao
,
X.
,
2017
, “
A Comparative Analysis of Single Nozzle and Multiple Nozzles Arrangements for Syngas Combustion in Heavy Duty Gas Turbine
,”
ASME J. Energy Resour. Technol.
,
139
(
2
), p.
022004
.
29.
Pal
,
P.
,
Wu
,
Y.
,
Lu
,
T.
,
Som
,
S.
,
See
,
Y. C.
, and
Le Moine
,
A.
,
2018
, “
Multidimensional Numerical Simulations of Knocking Combustion in a Cooperative Fuel Research Engine
,”
ASME J. Energy Resour. Technol.
,
140
(
10
), p.
102205
.
30.
Kodavasal
,
J.
,
Moiz
,
A. A.
,
Ameen
,
M. M. M.
, and
Som
,
S.
,
2018
, “
Using Machine Learning to Analyze Factors Determining Cycle-to-Cycle Variation in a Spark-Ignited Gasoline Engine
,”
ASME J. Energy Resour. Technol.
,
140
(
10
), p.
102204
.
31.
Noume
,
H. C.
,
Bomba
,
V.
, and
Obounou
,
M.
,
2020
, “
Numerical Investigation of a Turbulent Jet Flame With a Compact Skeletal Mechanism
,”
ASME J. Energy Resour.Technol.
,
142
(
3
), p.
032206
.
32.
Pope
,
S. B.
,
2013
, “
Small Scales, Many Species and the Manifold Challenges of Turbulent Combustion
,”
Proc. Combus. Inst.
,
34
(
1
), pp.
1
31
.
33.
Pierce
,
C. D.
, and
Moin
,
P.
,
2004
, “
Progress-Variable Approach for Large-Eddy Simulation of Non-premixed Turbulent Combustion
,”
J. Fluid Mech.
,
504
, pp.
73
97
.
34.
Van Oijen
,
J.
, and
De Goey
,
L.
,
2000
, “
Modelling of Premixed Laminar Flames Using Flamelet-Generated Manifolds
,”
Combust. Sci. Technol.
,
161
(
1
), pp.
113
137
.
35.
Gicquel
,
O.
,
Darabiha
,
N.
, and
Thévenin
,
D.
,
2000
, “
Liminar Premixed Hydrogen/Air Counterflow Flame Simulations Using Flame Prolongation of ILDM With Differential Diffusion
.”
Proc. Combus. Inst.
,
28
(
2
), pp.
1901
1908
.
36.
Bykov
,
V.
, and
Maas
,
U.
,
2007
, “
The Extension of the ILDM Concept to Reaction–Diffusion Manifolds
,”
Combust. Theory Model.
,
11
, pp.
839
862
.
37.
Nunno
,
A. C.
,
Grenga
,
T.
, and
Mueller
,
M. E.
,
2018
, “
Comparative Analysis of Methods for Heat Losses in Turbulent Premixed Flames Using Physically-Derived Reduced-Order Manifolds
,”
Combust. Theory Model.
,
23
, pp.
42
66
.
38.
Tay-Wo-Chong
,
L.
,
Zellhuber
,
M.
,
Komarek
,
T.
,
Im
,
H. G.
, and
Polifke
,
W.
,
2016
, “
Combined Influence of Strain and Heat Loss on Turbulent Premixed Flame Stabilization
,”
Flow Turbulence Combust.
,
97
, pp.
263
294
.
39.
Kolla
,
H.
, and
Swaminathan
,
N.
,
2010
, “
Strained Flamelets for Turbulent Premixed Flames, I: Formulation and Planar Flame Results
,”
Combust. Flame
,
157
(
5
), pp.
943
954
.
40.
Kolla
,
H.
, and
Swaminathan
,
N.
,
2010
, “
Strained Flamelets for Turbulent Premixed Flames Ii: Laboratory Flame Results
,”
Combust. Flame
,
157
(
7
), pp.
1274
1289
.
41.
Oijen
,
V.
,
Donini
,
A. A.
,
Bastiaans
,
R. R.
,
Boonkkamp
,
J. T. T
, and
Goey
,
D.
,
2016
, “
State-of-the-Art in Premixed Combustion Modeling Using Flamelet Generated Manifolds
,”
Prog. Energy Combust. Sci.
,
57
, pp.
30
74
.
42.
Lipatnikov
,
A. N.
,
2017
, “
Stratified Turbulent Flames: Recent Advances in Understanding the Influence of Mixture Inhomogeneities on Premixed Combustion and Modeling Challenges
,”
Prog. Energy Combust. Sci.
,
62
, pp.
87
132
.
43.
Almutairi
,
F.
,
Dinesh
,
K. R.
, and
van Oijen
,
J. A.
,
2022
, “
Modelling of Hydrogen-Blended Dual-Fuel Combustion Using Flamelet-Generated Manifold and Preferential Diffusion Effects
,”
Int. J. Hydrogen Energy.
,
48
(
4
), pp.
1602
1624
.
44.
Chen
,
Z. X.
,
Langella
,
I.
,
Barlow
,
R. S.
, and
Swaminathan
,
N.
,
2020
, “
Prediction of Local Extinctions in Piloted Jet Flames With Inhomogeneous Inlets Using Unstrained Flamelets
,”
Combust. Flame
,
212
, pp.
415
432
.
45.
Ahmad
,
S.
,
Ventosa-Molina
,
J.
,
Pérez-Segarra
,
C.
, and
Oliva
,
A.
,
2017
, “A Progress-Variable Correction Technique to Integrate Differential Diffusion Effects in Flamelet Models.”
46.
Perry
,
B. A.
,
Mueller
,
M. E.
, and
Masri
,
A. R.
,
2017
, “
A Two Mixture Fraction Flamelet Model for Large Eddy Simulation of Turbulent Flames With Inhomogeneous Inlets
,”
Proc. Combust. Inst.
,
36
(
2
), pp.
1767
1775
.
47.
Yu
,
P.
,
Kurose
,
R.
, and
Watanabe
,
H.
,
2023
, “
Investigation of the Derivation and Consistency of the Quasi-Two-Dimensional Flamelet Models for Non-premixed Flames
,”
Phys. Fluids.
,
35
(
1
).
48.
Maio
,
G.
,
Cailler
,
M.
,
Fiorina
,
B.
,
Mercier
,
R.
, and
Moureau
,
V.
,
2017
, “
LES Modeling of Piloted Jet Flames With Inhomogeneous Inlets Using Tabulated Chemistry Methods
,”
55th AIAA Aerospace Sciences Meeting
,
Grapevine, TX
,
Jan. 9–13
.
49.
Novoselov
,
A. G.
,
Perry
,
B. A.
, and
Mueller
,
M. E.
,
2021
, “
Two-Dimensional Manifold Equations for Multi-modal Turbulent Combustion: Nonpremixed Combustion Limit and Scalar Dissipation Rates
,”
Combust. Flame
,
231
, p.
111475
.
50.
Kleinheinz
,
K.
,
Kubis
,
T.
,
Trisjono
,
P.
,
Bode
,
M.
, and
Pitsch
,
H.
,
2017
, “
Computational Study of Flame Characteristics of a Turbulent Piloted Jet Burner With Inhomogeneous Inlets
,”
Proc. Combust. Inst.
,
36
(
2
), pp.
1747
1757
.
51.
Wu
,
H.
,
See
,
Y. C.
,
Wang
,
Q.
, and
Ihme
,
M.
,
2015
, “
A Pareto-efficient Combustion Framework With Submodel Assignment for Predicting Complex Flame Configurations
,”
Combust. Flame
,
162
, pp.
4208
4230
.
52.
Wang
,
Y.
,
Cai
,
R.
,
Shao
,
C.
,
Luo
,
K.
, and
Fan
,
J.
,
2023
, “
A Priori and a Posteriori Studies of a Novel Spray Flamelet Tabulation Methodology Considering Evaporation Effects
,”
Fuel
,
331
, p.
125892
.
53.
Hu
,
Y.
, and
Kurose
,
R.
,
2018
, “
Nonpremixed and Premixed Flamelets LES of Partially Premixed Spray Flames Using a Two-Phase Transport Equation of Progress Variable
,”
Combust. Flame
,
188
, pp.
227
242
.
54.
Farmand
,
P.
,
Nicolai
,
H.
,
Schumann
,
C.
,
Attili
,
A.
,
Berger
,
L.
,
Li
,
T.
,
Geschwindner
,
C.
, et al.,
2022
, “
Numerical Investigation and Assessment of Flamelet-Based Models for the Prediction of Pulverized Solid Fuel Homogeneous Ignition and Combustion
,”
Combust. Flame
,
235
, p.
111693
.
55.
Zheng
,
L.
, and
Bray
,
K.
,
1994
, “
The Application of New Combustion and Turbulence Models to H2-Air Nonpremixed Supersonic Combustion
,”
Combust. Flame
,
99
(
2
), pp.
440
448
.
56.
Evans
,
J. S.
,
Schexnayder Jr
,
C. J.
, and
Beach Jr
,
H. L.
,
1978
, “Application of a Two-Dimensional Parabolic Computer Program to Prediction of Turbulent Reacting Flows,” Tech. Rep. NASA-TP-1169.
57.
Secundov
,
A.
,
Bezgin
,
L.
,
Buriko
,
Y.
,
Guskov
,
O.
,
Kopchenov
,
V.
,
Laskin
,
I.
,
Lomkov
,
K.
,
Tshepin
,
S.
,
Volkov
,
D.
, and
Zaitsev
,
S.
,
1996
, “Flamelet Model Application for Non-Premixed Turbulent Combustion,” Tech. Rep. NAS1.26:202176.
58.
Oevermann
,
M.
,
2000
, “
Numerical Investigation of Turbulent Hydrogen Combustion in a Scramjet Using Flamelet Modeling
,”
Aerosp. Sci. Technol.
,
4
(
7
), pp.
463
480
.
59.
Terrapon
,
V.
,
Ham
,
F.
,
Pecnik
,
R.
, and
Pitsch
,
H.
,
2009
, “
A Flamelet-Based Model for Supersonic Combustion
,”
Annu. Res. Briefs.
60.
Saghafian
,
A.
,
Terrapon
,
V.
,
Ham
,
F.
, and
Pitsch
,
H.
,
2011
, “
An Efficient Flamelet-Based Combustion Model for Supersonic Flows
,”
17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference
,
San Francisco, CA
,
Apr. 11–14
, p.
2267
.
61.
Quinlan
,
J.
,
Drozda
,
T. G.
,
McDaniel
,
J. C.
,
Lacaze
,
G.
, and
Oefelein
,
J. C.
,
2015
, “
A Priori Analysis of a Compressible Flamelet Model Using RANS Data for a Dual-Mode Scramjet Combustor
,”
22nd AIAA Computational Fluid Dynamics Conference
,
Dallas, TX
,
June 22–26
, p.
3208
.
62.
Ladeinde
,
F.
,
Lou
,
Z.
, and
Li
,
W.
,
2015
, “
In Search of Reaction Rate Scaling Law for Supersonic Combustion
,” APS Division of Fluid Dynamics Meeting Abstracts, p.
E6005
.
63.
Ladeinde
,
F.
, and
Lou
,
Z.
,
2016
, “
Scaling for Flamelet Calculation of Turbulent Supersonic Combustion
,”
52nd AIAA/SAE/ASEE Joint Propulsion Conference
,
Salt Lake City, UT
,
July 25–27
, p.
4567
.
64.
Ladeinde
,
F.
, and
Lou
,
Z.
,
2017
, “
Pressure Treatment in the Flamelet Modeling of Turbulent Supersonic Combustion
,”
55th AIAA Aerospace Sciences Meeting
,
Grapevine, TX
,
Jan. 9–13
, p.
0342
.
65.
Ladeinde
,
F.
, and
Lou
,
Z.
,
2018
, “
Improved Flamelet Modeling of Supersonic Combustion
,”
J. Propul. Power
,
34
(
3
), pp.
750
761
.
66.
Zdybał
,
K.
,
Armstrong
,
E.
,
Parente
,
A.
, and
Sutherland
,
J. C.
,
2020
, “
Pcafold: Python Software to Generate, Analyze and Improve PCA-Derived Low-Dimensional Manifolds
,”
SoftwareX
,
12
, p.
100630
.
67.
Ritchie
,
A.
,
Scott
,
C.
,
Balzano
,
L.
,
Kessler
,
D.
, and
Sripada
,
C. S.
,
2019
, “
Supervised Principal Component Analysis Via Manifold Optimization
,”
2019 IEEE Data Science Workshop (DSW)
,
Minneapolis, MN
,
June 2–5
,
IEEE
, pp.
6
10
.
68.
Yang
,
Y.
,
Pope
,
S. B.
, and
Chen
,
J. H.
,
2013
, “
Empirical Low-Dimensional Manifolds in Composition Space
,”
Combust. Flame
,
160
(
10
), pp.
1967
1980
.
69.
Chen
,
J.
,
Liu
,
M.
, and
Chen
,
Y.
,
2015
, “
Optimizing Progress Variable Definition in Flamelet-Based Dimension Reduction in Combustion
,”
Appl. Math. Mech.
,
36
(
11
), pp.
1481
1498
.
70.
Tang
,
P.
,
2021
, “
Study on the Optimization of Flamelet Tabulated Scalars and Modeling of Heat Release Rate Based on Machine Learning
,”
PhD thesis
,
University of Science and Technology of China
,
Hefei
.
71.
Yellapantula
,
S.
,
Perry
,
B. A.
, and
Grout
,
R. W.
,
2021
, “
Deep Learning-Based Model for Progress Variable Dissipation Rate in Turbulent Premixed Flames
,”
Proc. Combust. Inst.
,
38
(
2
), pp.
2929
2938
.
72.
Chi
,
C.
,
Xu
,
X.
, and
Thévenin
,
D.
,
2022
, “
Efficient Premixed Turbulent Combustion Simulations Using Flamelet Manifold Neural Networks: A Priori and a Posteriori Assessment
,”
Combust. Flame.
,
245
, p.
112325
.
73.
Perry
,
B. A.
,
de Frahan
,
M. T. H.
, and
Yellapantula
,
S.
,
2022
, “
Co-Optimized Machine-Learned Manifold Models for Large Eddy Simulation of Turbulent Combustion
,”
Combust. Flame.
,
244
, p.
112286
.
74.
D’Errico
,
G.
,
Lucchini
,
T.
,
Onorati
,
A.
, and
Hardy
,
G.
,
2015
, “
Computational Fluid Dynamics Modeling of Combustion in Heavy-Duty Diesel Engines
,”
Int. J. Engine Res.
,
16
(
1
), pp.
112
124
.
75.
Lu
,
T.
, and
Law
,
C. K.
,
2005
, “
A Directed Relation Graph Method for Mechanism Reduction
,”
Proc. Combust. Inst.
,
30
(
1
), pp.
1333
1341
.
76.
Rein
,
M.
,
1992
, “
The Partial-Equilibrium Approximation in Reacting Flows
,”
Phys. Fluids A
,
4
(
5
), pp.
873
886
.
77.
Goussis
,
D. A.
,
2012
, “
Quasi Steady State and Partial Equilibrium Approximations: Their Relation and Their Validity
,”
Combust. Theory Model.
,
16
(
5
), pp.
869
926
.
78.
Weise
,
S.
,
Popp
,
S.
,
Messig
,
D.
, and
Hasse
,
C.
,
2018
, “
A Computationally Efficient Implementation of Tabulated Combustion Chemistry Based on Polynomials and Automatic Source Code Generation
,”
Flow Turbul. Combust.
,
100
, pp.
119
146
.
79.
Bode
,
M.
,
Collier
,
N.
,
Bisetti
,
F.
, and
Pitsch
,
H.
,
2019
, “
Adaptive Chemistry Lookup Tables for Combustion Simulations Using Optimal B-Spline Interpolants
,”
Combust. Theory Model.
,
23
(
4
), pp.
674
699
.
80.
Yamamoto
,
H.
,
Toyonaga
,
R.
,
Komatsu
,
Y.
,
Kabayama
,
K.
,
Mizobuchi
,
Y.
, and
Sato
,
T.
,
2020
, “
Improved Methods of Laminar Flamelet Model for Compressible Flow
,”
AIAA J.
,
58
(
8
), pp.
3514
3526
.
81.
Demir
,
P.
,
Kundu
,
S.
,
Nunno
,
A. C.
,
Som
,
S.
,
Baurle
,
R. A.
, and
Drozda
,
T. G.
,
2021
, “
Deep Neural Network Based Unsteady Flamelet Progress Variable Approach in a Supersonic Combustor
,” AIAA SCITECH 2022 Forum.
82.
Zhang
,
J.
,
Huang
,
H.
,
Xia
,
Z.
,
Ma
,
L.
,
Duan
,
Y.
,
Feng
,
Y.
, and
Huang
,
J.
,
2020
, “
Artificial Neural Networks for Chemistry Representation in Numerical Simulation of the Flamelet-Based Models for Turbulent Combustion
,”
IEEE Access
,
8
, pp.
80020
80029
.
83.
Beretta
,
G. P.
,
Keck
,
J. C.
,
Janbozorgi
,
M.
, and
Metghalchi
,
H.
,
2012
, “
The Rate-Controlled Constrained-Equilibrium Approach to Far-from-Local-Equilibrium Thermodynamics
,”
Entropy
,
14
(
2
), pp.
92
130
.
84.
Jones
,
W.
, and
Rigopoulos
,
S.
,
2005
, “
Rate-Controlled Constrained Equilibrium: Formulation and Application to Nonpremixed Laminar Flames
,”
Combust. Flame
,
142
(
3
), pp.
223
234
.
85.
Hadi
,
F.
,
Yu
,
G.
, and
Metghalchi
,
H.
,
2018
, “Fundamentals of Rate-Controlled Constrained-Equilibrium Method,”
Energy for Propulsion
,
A. K.
Runchal
,
A. K.
Gupta
,
A.
Kushari
,
A.
De
, and
S. K.
Aggarwal
, eds.,
Springer
,
Singapore
, pp.
237
266
.
86.
Janbozorgi
,
M.
, and
Metghalchi
,
H.
,
2009
, “
Rate-Controlled Constrained-Equilibrium Theory Applied to the Expansion of Combustion Products in the Power Stroke of an Internal Combustion Engine
,”
Int. J. Thermodyn.
,
12
(
1
), pp.
44
50
.
87.
Beretta
,
G. P.
,
Janbozorgi
,
M.
, and
Metghalchi
,
H.
,
2016
, “
Degree of Disequilibrium Analysis for Automatic Selection of Kinetic Constraints in the Rate-Controlled Constrained-Equilibrium Method
,”
Combust. Flame
,
168
, pp.
342
364
.
88.
Ugarte
,
S.
,
Yue
,
G.
, and
Metghalchi
,
H.
,
2005
, “
Application of the Maximum Entropy Principle in the Analysis of a Non-equilibrium Chemically Reacting Mixture
,”
Int. J. Thermodyn.
,
8
(
1
), pp.
43
53
.
89.
Chen
,
L.
, and
Battaglia
,
F.
,
2016
, “
The Effects of Fuel Mixtures in Nonpremixed Combustion for a Bluff-Body Flame
,”
ASME J. Energy Resour. Technol.
,
138
(
2
), p.
022204
.
90.
Tajik
,
A. R.
,
Shamim
,
T.
,
Ghoniem
,
A. F.
, and
Al-Rub
,
R. K. A.
,
2021
, “
The Impact of Critical Operational Parameters on the Performance of the Aluminum Anode Baking Furnace
,”
ASME J. Energy Resour. Technol.
,
143
(
6
), p.
062103
.
91.
Strakey
,
P. A.
,
2019
, “
Oxy-Combustion Modeling for Direct-Fired Supercritical CO2 Power Cycles
,”
ASME J. Energy Resour. Technol.
,
141
(
7
), p.
070706
.
92.
Lipatnikov
,
A. N.
,
Nilsson
,
T.
,
Yu
,
R.
,
Bai
,
X.-S.
, and
Sabelnikov
,
V. A.
,
2021
, “
Assessment of a Flamelet Approach to Evaluating Mean Species Mass Fractions in Moderately and Highly Turbulent Premixed Flames
,”
Phys. Fluids
,
33
(
4
), p.
041521
.
93.
Coclite
,
A.
,
Pascazio
,
G.
,
De Palma
,
P.
,
Cutrone
,
L.
, and
Ihme
,
M.
,
2015
, “
An SMLD Joint PDF Model for Turbulent Non-Premixed Combustion Using the Flamelet Progress-Variable Approach
,”
Flow Turbulence Combust.
,
95
, pp.
97
119
.
94.
Ihme
,
M.
, and
Pitsch
,
H.
,
2008
, “
Prediction of Extinction and Reignition in Nonpremixed Turbulent Flames Using a Flamelet/Progress Variable Model: 1. A Priori Study and Presumed PDF Closure
,”
Combust. Flame
,
155
, pp.
70
89
.
95.
Ihme
,
M.
, and
Pitsch
,
H.
,
2008
, “
Prediction of Extinction and Reignition in Nonpremixed Turbulent Flames Using a Flamelet/Progress Variable Model. 2. Application in LES of Sandia Flames D and E
,”
Combust. Flame
,
155
, pp.
90
107
.
96.
Coclite
,
A.
,
Cutrone
,
L.
,
Gurtner
,
M.
,
De Palma
,
P.
,
Haidn
,
O.
, and
Pascazio
,
G.
,
2016
, “
Computing Supersonic Non-Premixed Turbulent Combustion by an SMLD Flamelet Progress Variable Model
,”
Int. J. Hydrogen Energy
,
41
(
1
), pp.
632
646
.
97.
Perry
,
B. A.
, and
Mueller
,
M. E.
,
2019
, “
Effect of Multiscalar Subfilter PDF Models in LES of Turbulent Flames With Inhomogeneous Inlets
,”
Proc. Combust. Inst.
,
37
(
2
), pp.
2287
2295
.
98.
de Frahan
,
M. T. H.
,
Yellapantula
,
S.
,
King
,
R.
,
Day
,
M. S.
, and
Grout
,
R. W.
,
2019
, “
Deep Learning for Presumed Probability Density Function Models
,”
Combust. Flame
,
208
, pp.
436
450
.
99.
Mukhopadhyay
,
S.
,
Van Oijen
,
J.
, and
De Goey
,
L.
,
2015
, “
A Comparative Study of Presumed PDFs for Premixed Turbulent Combustion Modeling Based on Progress Variable and Its Variance
,”
Fuel
,
159
, pp.
728
740
.
100.
Lipatnikov
,
A. N.
,
Sabelnikov
,
V. A.
,
Hernández-Pérez
,
F. E.
,
Song
,
W.
, and
Im
,
H. G.
,
2021
, “
Prediction of Mean Radical Concentrations in Lean Hydrogen-Air Turbulent Flames at Different Karlovitz Numbers Adopting a Newly Extended Flamelet-Based Presumed PDF
,”
Combust. Flame
,
226
, pp.
248
259
.
101.
Lipatnikov
,
A. N.
, and
Sabelnikov
,
V. A.
,
2020
, “
An Extended Flamelet-Based Presumed Probability Density Function for Predicting Mean Concentrations of Various Species in Premixed Turbulent Flames
,”
Int. J. Hydrogen Energy
,
45
(
55
), pp.
31162
31178
.
102.
Ghadimi
,
M.
,
Atayizadeh
,
H.
, and
Salehi
,
M. M.
,
2021
, “
Presumed Joint-PDF Modelling for Turbulent Stratified Flames
,”
Flow Turbulence Combust.
,
107
, pp.
405
439
.
103.
Sheikhi
,
M.
,
Drozda
,
T.
,
Givi
,
P.
,
Jaberi
,
F.
, and
Pope
,
S.
,
2005
, “
Large Eddy Simulation of a Turbulent Nonpremixed Piloted Methane Jet Flame (Sandia Flame D)
,”
Proc. Combust. Inst.
,
30
(
1
), pp.
549
556
.
104.
Pope
,
S. B.
,
1991
, “
Computations of Turbulent Combustion: Progress and Challenges
,”
Symposium (International) on Combustion, Vol. 23, Elsevier
, pp.
591
612
.
105.
Safari
,
M.
, and
Sheikhi
,
M. R. H.
,
2014
, “
Large Eddy Simulation-Based Analysis of Entropy Generation in a Turbulent Nonpremixed Flame
,”
Energy
,
78
, pp.
451
457
.
106.
Safari
,
M.
, and
Sheikhi
,
M. R. H.
,
2014
, “
Large Eddy Simulation for Prediction of Entropy Generation in a Nonpremixed Turbulent Jet Flame
,”
J. Energy Res. Technol.
,
136
(
2
), p.
022002
.
107.
Tian
,
L.
, and
Lindstedt
,
R.
,
2019
, “
Evaluation of Reaction Progress Variable-Mixture Fraction Statistics in Partially Premixed Flames
,”
Proc. Combust. Inst.
,
37
(
2
), pp.
2241
2248
.
108.
Ranade
,
R.
, and
Echekki
,
T.
,
2019
, “
A Framework for Data-Based Turbulent Combustion Closure: A Priori Validation
,”
Combust. Flame
,
206
, pp.
490
505
.
109.
Kim
,
N.
, and
Kim
,
Y.
,
2017
, “
Multi-Environment Probability Density Function Approach for Turbulent Partially-Premixed Methane/Air Flame With Inhomogeneous Inlets
,”
Combust. Flame
,
182
, pp.
190
205
.
110.
Hu
,
Y.
,
Olguin
,
H.
, and
Gutheil
,
E.
,
2017
, “
A Spray Flamelet/Progress Variable Approach Combined With a Transported Joint PDF Model for Turbulent Spray Flames
,”
Combust. Theory Model.
,
21
(
3
), pp.
575
602
.
111.
Jangi
,
M.
,
Zhao
,
X.
,
Haworth
,
D. C.
, and
Bai
,
X.-S.
,
2015
, “
Stabilization and Liftoff Length of a Non-Premixed Methane/Air Jet Flame Discharging Into a High-Temperature Environment: An Accelerated Transported PDF Method
,”
Combust. Flame
,
162
(
2
), pp.
408
419
.
112.
Gitushi
,
K. M.
,
Ranade
,
R.
, and
Echekki
,
T.
,
2022
, “
Investigation of Deep Learning Methods for Efficient High-Fidelity Simulations in Turbulent Combustion
,”
Combust. Flame
,
236
, p.
111814
.
113.
Readshaw
,
T.
,
Ding
,
T.
,
Rigopoulos
,
S.
, and
Jones
,
W.
,
2021
, “
Modeling of Turbulent Flames With the Large Eddy Simulation–Probability Density Function (LES–PDF) Approach, Stochastic Fields, and Artificial Neural Networks
,”
Phys. Fluids
,
33
(
3
), p.
035154
.
114.
Lackmann
,
T.
,
Hewson
,
J.
,
Knaus
,
R.
,
Kerstein
,
A. R.
, and
Oevermann
,
M.
,
2017
, “
Stochastic Modeling of Unsteady Extinction in Turbulent Non-premixed Combustion
,”
Proc. Combust. Inst.
,
36
(
2
), pp.
1677
1684
.
115.
Hu
,
Y.
,
Olguin
,
H.
, and
Gutheil
,
E.
,
2016
, “
Transported Joint PDF Simulation of Turbulent Spray Flames Combined With a Spray Flamelet Model Using a Transported Scalar Dissipation Rate
,”
Combust. Sci. Technol.
, p.
40
.
116.
Trisjono
,
P.
,
Kleinheinz
,
K.
,
Hawkes
,
E. R.
, and
Pitsch
,
H.
,
2016
, “
Modeling Turbulence–Chemistry Interaction in Lean Premixed Hydrogen Flames With a Strained Flamelet Model
,”
Combust. Flame
,
174
, pp.
194
207
.
117.
Nmira
,
F.
,
Bouffard
,
A.
, and
Consalvi
,
J.-L.
,
2023
, “
Flamelet/Transported PDF Simulations of Ethylene/Air Jet Turbulent Non-premixed Flame Using a Three-Equation PAH-Based Soot Production Model
,”
Combust. Theory Model.
,
27
(
6
), pp.
820
851
.
118.
Chan
,
W. L.
, and
Ihme
,
M.
,
2016
, “
Analysis of Combustion Closure Assumptions in a Dual-Mode Scramjet Combustor
,”
54th AIAA Aerospace Sciences Meeting
,
San Diego, CA
,
Jan. 4–8
, p.
1900
.
119.
Joe
,
E. S.
, and
Perumal
,
D. A.
,
2023
, “
Combustion Modelling of Sequential Combustion in Steam-Methane Reformation (SMR) Furnace Using Adiabatic Flamelet Generated Manifold
,”
Therm. Sci. Eng. Prog.
,
40
, p.
101795
.
120.
Pant
,
T.
,
Han
,
C.
, and
Wang
,
H.
,
2019
, “
Computational Investigations of the Coupling Between Transient Flame Dynamics and Thermo-acoustic Instability in a Self-Excited Resonance Combustor
,”
Combust. Theory Model.
,
23
(
5
), pp.
854
884
.
121.
Proch
,
F.
, and
Kempf
,
A.
,
2015
, “
Modeling Heat Loss Effects in the Large Eddy Simulation of a Model Gas Turbine Combustor With Premixed Flamelet Generated Manifolds
,”
Proc. Combust. Inst.
,
35
(
3
), pp.
3337
3345
.
122.
See
,
Y. C.
, and
Ihme
,
M.
,
2015
, “
Large Eddy Simulation of a Partially-Premixed Gas Turbine Model Combustor
,”
Proc. Combust. Inst.
,
35
(
2
), pp.
1225
1234
.
123.
Safarzadeh
,
M.
,
Heidarinejad
,
G.
, and
Pasdarshahri
,
H.
,
2021
, “
Air Curtain to Control Smoke and Fire Spread in a Ventilated Multi-Floor Building
,”
Int. J. Therm. Sci.
,
159
, p.
106612
.
124.
Safarzadeh
,
M.
,
Heidarinejad
,
G.
, and
Pasdarshahri
,
H.
,
2022
, “
Verification of Temperature and Toxic Species in Methane Compartment Fire Using Flamelet Generated Manifold With Radiation Effect
,”
Int. J. Therm. Sci.
,
176
, p.
107499
.
125.
Xu
,
R.
,
Marchand
,
A.
,
Verma
,
S.
,
Rogaume
,
T.
,
Richard
,
F.
,
Luche
,
J.
,
Trouvé
,
A.
, et al.,
2021
, “
Simulations of the Coupling Between Combustion and Radiation in a Turbulent Line Fire Using an Unsteady Flamelet Model
,”
Fire Safety J.
,
120
, p.
103101
.
You do not currently have access to this content.