In this study, the predictive performance of six different two-equation turbulence models on the flow in an unbaffled stirred tank has been investigated. These models include the low Reynolds number k-ε model of Rodi, W., and Mansour, N. N., “Low Reynolds Number k-ε Modeling With the Aid of Direct Simulation Data,” J. Fluid Mech., Vol. 250, pp. 509–529, the high and low Reynolds number k-ω models of Wilson, D. C., 1993, Turbulence Modeling for CFD, DCW Industries, La Canada, CA., the RNG k-ε model, and modified k-ω and k-ε models which incorporate a correction for streamline curvature and swirl. Model results are compared with experimental laser Doppler velocimetry (LDV) data for the turbulent velocity field in an unbaffled tank with a single paddle impeller. An overall qualitative agreement has been found between the experimental and numerical results with poor predictions observed in some parts of the tank. Discrepancies in model predictions are observed in the anisotropic regions of the flow such as near the impeller shaft and in the impeller discharge region where the model overpredicts the radial velocity component. These results are discussed and a strategy for improving two-equation models for application to impeller stirred tanks is proposed.

1.
Harvey
,
P. S.
, and
Greaves
,
M.
,
1982
, “
Turbulent Flow in an Agitated Vessel, Part II: Numerical Solution and Model Predictions
,”
Trans. Inst. Chem. Eng.
,
60
, pp.
201
210
.
2.
Ranade
,
V. V.
, and
Joshi
,
J. B.
,
1989
, “
Flow Generated by Pitched Blade Turbines II: Simulation Using k-ε Model
,”
Chem. Eng. Commun.
,
81
, pp.
225
248
.
3.
Ju
,
S. Y.
,
Mulvahill
,
T. M.
, and
Pike
,
R. W.
,
1990
, “
Three-Dimensional Turbulent Flow in Agitated Vessels with a Nonisotropic Viscosity Turbulence Model
,”
Can. J. Chem. Eng.
,
68
, pp.
3
16
.
4.
Kresta
,
S. M.
, and
Wood
,
P. E.
,
1991
, “
Prediction of the Three Dimensional Turbulent Flow in Stirred Tanks
,”
AIChE J.
,
37
, pp.
448
460
.
5.
Bakker
,
A.
,
Myers
,
K. J.
,
Ward
,
R. W.
, and
Lee
,
C. K.
,
1996
, “
The Laminar and Turbulent Flow Pattern of a Pitched Blade Turbine
,”
Trans. Inst. Chem. Eng.
,
74
, pp.
485
491
.
6.
Ducoste
,
J. J.
, and
Clark
,
M. M.
,
1999
, “
Turbulence in Flocculators: Comparison of Measurements and CFD Simulations
,”
AIChE J.
,
45
, pp.
432
436
.
7.
Dong
,
L.
,
Johansen
,
S. T.
, and
Engh
,
T. A.
,
1994b
, “
Flow Induced by an Impeller in an Unbaffled Tank-II. Numerical Modeling
,”
Chem. Eng. Sci.
,
49
, pp.
3511
3518
.
8.
Harvey
,
A. D.
,
Wood
,
S. P.
, and
Leng
,
D. E.
,
1997
, “
Experimental and Computational Study of Multiple Impeller Flows
,”
Chem. Eng. Sci.
,
52
, pp.
1479
1491
.
9.
Wechsler
,
K.
,
Breuer
,
M.
, and
Durst
,
F.
,
1999
, “
Steady and Unsteady Computations of Turbulent Flows Induced by a 4/45° Pitched-Blade Impeller
,”
ASME J. Fluids Eng.
,
121
, pp.
318
329
.
10.
Dong
,
L.
,
Johansen
,
S. T.
, and
Engh
,
T. A.
,
1994a
, “
Flow Induced by an Impeller in an Unbaffled Tank-I. Experimental
,”
Chem. Eng. Sci.
,
49
, pp.
549
560
.
11.
Wilcox, D. C., 1993, Turbulence Modeling for CFD, DCW Industries, La Can˜ada, CA.
12.
Rogers
,
S. E.
,
Kwak
,
D.
, and
Kiris
,
C.
,
1991
, “
Steady and Unsteady Solutions of the Incompressible Navier-Stokes Equations
,”
AIAA J.
,
29
, pp.
603
610
.
13.
Rodi
,
W.
, and
Mansour
,
N. N.
,
1993
, “
Low Reynolds Number k-ε Modeling With the Aid of Direct Simulation Data
,”
J. Fluid Mech.
,
250
, pp.
509
529
.
14.
Sloan
,
D. G.
,
Smith
,
P. J.
, and
Smoot
,
L. D.
,
1986
, “
Modeling of Swirl in Turbulent Flow Systems
,”
Prog. Energy Combust. Sci.
,
12
, pp.
163
250
.
15.
Yakhot
,
V.
, and
Smith
,
L. M.
,
1992
, “
The Renormalization Group, the ε-Expansion and Derivation of Turbulence Models
,”
J. Sci. Comput.
,
7
, pp.
35
61
.
16.
“Fluent 4.4 User’s Guide,” 1997, Second Edition, Fluent Inc., Lebanon, NH., Chem. Eng. Sci., 52, pp. 1479–1491.
17.
Wolfstein
,
M.
,
1969
, “
The Velocity and Temperature Distribution of One-Dimensional Flow with Turbulence Augmentation and Pressure Gradient
,”
Int. J. Heat Mass Transf.
,
12
, pp.
301
318
.
18.
Reynolds, W. C., 1982, Lectures on Turbulence, presented as a short course at Los Alamos National Laboratories. Los Alamos, NM.
19.
Kresta
,
S. M.
,
1998
, “
Turbulence in Stirred Tanks: Anisotropic, Approximate, and Applied
,”
Chem. Eng. Sci.
,
76
, pp.
563
576
.
20.
Kresta
,
S. M.
, and
Wood
,
P. E.
,
1993
, “
The Flow Field Produced by a Pitched Blade Turbine: Characterization of the Turbulence and Estimation of the Dissipation Rate
,”
Chem. Eng. Sci.
,
48
, pp.
1761
1774
.
21.
Fort
,
I. M.
, and
Makovsky
,
T.
,
1993
, “
Flow and Turbulence in Baffled System with Impeller with Inclined Blades
,”
Collect. Czech. Chem. Commun.
,
33
, pp.
31
44
.
22.
Zhou
,
Genwen
, and
Kresta
,
S. M.
,
1996
, “
Distribution of Energy Between Convective and Turbulent Flow for Three Frequently Used Impellers
,”
Trans. Inst. Chem. Eng.
,
74A
, pp.
379
389
.
23.
Jaworski
,
Z.
,
Nienow
,
A. W.
, and
Dyster
,
K. N.
,
1996
, “
An LDA Study of Turbulent Flow Field in a Baffled Vessel Agitated by an Axial, Down-Pumping Hydrofoil Impeller
,”
Can. J. Chem. Eng.
,
74
, pp.
3
15
.
24.
Hockey
,
R. M.
, and
Nouri
,
J. M.
,
1996
, “
Turbulent Flow in a Baffled Vessel Stirred by a 60° Pitched Blade Impeller
,”
Chem. Eng. Sci.
,
51
, pp.
4405
4421
.
25.
Brodkey, R. S., 1967, The Phenomena of Fluid Motions, Dover Edition 1995, New York, NY.
26.
Sreenivasan
,
K. R.
,
1984
, “
On the Scaling of the Turbulence Energy Dissipation Rate
,”
Phys. Fluids
,
27
, pp.
1048
1051
.
27.
Stoots
,
C. M.
, and
Calabrese
,
R. C.
,
1995
, “
Mean Velocity Field Relative to a Rushton Turbine Blade
,”
AIChE J.
,
41
, pp.
1
11
.
28.
Kresta, S. M., Roussinova, V. and Grgic, B., 1999, ASME/JSME Summer Meeting, July 18–23, San Francisco, CA.
29.
Sahu
,
A. K.
, and
Joshi
,
J. B.
,
1995
, “
Simulation of Flow in Stirred Vessels with Axial Flow Impellers: Effects of Various Numerical Schemes and Turbulence Model Parameters
,”
Ind. Eng. Chem. Res.
,
34
, pp.
626
639
.
30.
Durbin
,
P. A.
,
1991
, “
Near-Wall Turbulence Closure Modeling Without Damping Functions
,”
Theor. Comput. Fluid Dyn.
,
3
, pp.
1
13
.
31.
Verzicco, R., Iaccarino, G., Fatica, G., and Orlandi, P., 2000, “Flow in an impeller stirred tank using an immersed boundary method,” Annual Research Briefs, Center for Turbulence Research, NASA Ames/Stanford Univ. pp. 251–261.
You do not currently have access to this content.