In the previous paper (Part 1) (P. Yuan and L. Schaefer, 2006, ASME J. Fluids Eng., 128, pp. 142–150), the multiphase isothermal lattice Boltzmann equation (LBE) model and single phase thermal LBE (TLBE) model were described. In this work, by combining these two models, the thermal two-phase LBE model is proposed. The coupling of the two models is through a suitably defined body force term. Due to the external nature of this coupling, the new model will have the same stability as the isothermal two-phase model. The applicability of the model is shown by the numerical simulation results of a thermal two-phase flow system in a rectangular channel. Our preliminary studies show that different equations of state, variable wettability, gravity and buoyancy effects, and relatively high Rayleigh numbers can be readily simulated by this new model.

1.
Chen
,
S.
, and
Doolen
,
G. D.
, 1998, “
Lattice Boltzmann Method for Fluid Flows
,”
Annu. Rev. Fluid Mech.
0066-4189,
30
, pp.
329
364
.
2.
Yu
,
D.
,
Mei
,
R.
,
Luo
,
L.
, and
Shyy
,
W.
, 2003, “
Viscous Flow Comutations With the Method of Lattice Boltzmann Equation
,”
Prog. Aerosp. Sci.
0376-0421,
39
, pp.
329
367
.
3.
Yuan
,
P.
, and
Schaefer
,
L.
, 2006, “
A Thermal Lattice Boltzmann Two-Phase Flow Model and Its Application to Heat Transfer Problems—Part 1. Theoretical Foundation
,”
ASME J. Fluids Eng.
0098-2202,
128
, pp.
142
150
.
4.
Shan
,
X.
, and
Chen
,
H.
, 1993, “
Lattice Boltzmann Model for Simulation Flows With Multiple Phases and Components
,”
Phys. Rev. E
1063-651X,
47
, pp.
1815
1819
.
5.
Shan
,
X.
, and
Chen
,
H.
, 1994, “
Simulation of Nonideal Gases and Liquid-Gas Phase Transitions by the Lattice Boltzmann Equation
,”
Phys. Rev. E
1063-651X,
49
, pp.
2941
2948
.
6.
Shan
,
X.
, and
Doolen
,
G. D.
, 1995, “
Multicomponent Lattice-Boltzmann Model With Interparticle Interaction
,”
J. Stat. Phys.
0022-4715,
81
, pp.
379
393
.
7.
Alexander
,
F. J.
,
Chen
,
S.
, and
Sterling
,
J. D.
, 1993, “
Lattice Boltzmann Thermohydrodynamics
,”
Phys. Rev. E
1063-651X,
47
, pp.
R2249
R2252
.
8.
McNamara
,
G.
,
Garcia
,
A. L.
, and
Alder
,
B. J.
, 1995, “
Stabilization of Thermal Lattice Boltzmann Models
,”
J. Stat. Phys.
0022-4715,
81
, pp.
395
408
.
9.
Pavlo
,
P.
,
Vahala
,
G.
, and
Vahala
,
L.
, 1998, “
Higher Order Isotropic Velocity Grids in Lattice Methods
,”
Phys. Rev. Lett.
0031-9007,
80
, pp.
3960
3963
.
10.
Shan
,
X.
, 1997, “
Simulation of Rayleigh—Bénard Convection Using a Lattice Boltzmann Method
,”
Phys. Rev. E
1063-651X,
55
, pp.
2780
2788
.
11.
Inamuro
,
T.
,
Yoshino
,
M.
,
Inoue
,
H.
,
Mizuno
,
R.
, and
Ogino
,
F.
, 2002, “
A Lattice Boltzmann Method for a Binary Miscible Fluid Mixture and its Application to a Heat-Transfer Problem
,”
J. Comput. Phys.
0021-9991,
179
, pp.
201
215
.
12.
Succi
,
S.
, 2001,
The Lattice Boltzmann Equation for Fluid Dynamics and Beyond
,
Oxford University Press
,
Oxford, UK
.
13.
Sukop
,
M.
, and
Or
,
D.
, 2004, “
Lattice Boltzmann Method for Modeling Liquid-Vapor Interface Configurations in Porous Media
,”
Water Resour. Res.
0043-1397,
40
, p.
W01509
.
14.
Kono
,
K.
,
Ishizuka
,
T.
,
Tsuda
,
H.
, and
Kurosawa
,
A.
, 2000, “
Application of Lattice Boltzmann Model to Multiphase Flows With Phase Transition
,”
Comput. Phys. Commun.
0010-4655,
129
, pp.
110
120
.
15.
Miller
,
W.
, and
Succi
,
S.
, 2002, “
A Lattice Boltzmann Model for Anisotropic Crystal Growth From Melt
,”
J. Stat. Phys.
0022-4715,
107
, pp.
173
186
.
You do not currently have access to this content.