An experimental and theoretical investigation of the flow at the outlet of a Francis turbine runner is carried out in order to elucidate the causes of a sudden drop in the draft tube pressure recovery coefficient at a discharge near the best efficiency operating point. Laser Doppler anemometry velocity measurements were performed for both axial and circumferential velocity components at the runner outlet. A suitable analytical representation of the swirling flow has been developed taking the discharge coefficient as independent variable. It is found that the investigated mean swirling flow can be accurately represented as a superposition of three distinct vortices. An eigenvalue analysis of the linearized equation for steady, axisymmetric, and inviscid swirling flow reveals that the swirl reaches a critical state precisely (within 1.3%) at the discharge where the sudden variation in draft tube pressure recovery is observed. This is very useful for turbine design and optimization, where a suitable runner geometry should avoid such critical swirl configuration within the normal operating range.

1.
Escudier
,
M.
, 1987, “
Confined Vortices in Flow Machinery
,”
Annu. Rev. Fluid Mech.
0066-4189,
19
, pp.
27
52
.
2.
Avellan
,
F.
, 2000, “
Flow Investigation in a Francis Draft Tube: the FLINDT Project
,” in
Proceedings of the 20th IAHR Symposium
,
Charlotte, NC
.
3.
Mauri
,
S.
, 2002, “
Numerical Simulation and Flow Analysis of an Elbow Diffuser
,” Ph.D. thesis, École Politechnique Fédérale de Lausanne, Lausanne, Switzerland.
4.
Mauri
,
S.
,
Kueny
,
J.-L.
, and
Avellan
,
F.
, 2000, “
Numerical Prediction of the Flow in a Turbine Draft Tube. Influence of the Boundary Conditions
,” FEDSM’00-11084,
Proceedings of the ASME 2000 Fluids Engineering Division Summer Meeting
,
Boston, MA
.
5.
Engström
,
T. F.
, 2003, “
Simulation and Experiments of Turbulent Diffuser Flow With Hydropower Applications
,” Ph.D. thesis, Luleå University of Technology, Luleå, Sweden.
6.
Cervantes
,
M. J.
, 2003, “
Effects of Boundary Conditions and Unsteadiness on Draft Tube Flow
,” Ph.D. thesis, Luleå University of Technology, Luleå, Sweden.
7.
Harvey
,
J. K.
, 1962, “
Some Observations of the Vortex Breakdown Phenomenon
,”
J. Fluid Mech.
0022-1120,
14
, pp.
585
592
.
8.
Faler
,
J. H.
, and
Leibovich
,
S.
, 1977, “
Disrupted States of Vortex Flow and Vortex Breakdown
,”
Phys. Fluids
0031-9171,
20
(
9
), pp.
1385
1400
.
9.
Mattner
,
T. W.
,
Joubert
,
P. N.
, and
Chong
,
M. S.
, 2002, “
Vortical Flow. Part 1. Flow Through a Constant Diameter Pipe
,”
J. Fluid Mech.
0022-1120,
463
, pp.
259
291
.
10.
Snyder
,
D. O.
, and
Spall
,
R. E.
, 2000, “
Numerical Simulation of Bubble-Type Vortex Breakdown Within a Tube-and-Vane Apparatus
,”
Phys. Fluids
1070-6631,
12
(
3
), pp.
603
608
.
11.
Benjamin
,
T. J.
, 1962, “
Theory of the Vortex Breakdown Phenomenon
,”
J. Fluid Mech.
0022-1120,
14
, pp.
593
629
.
12.
Keller
,
J. J.
, 1995, “
On the Interpretation of Vortex Breakdown
,”
Phys. Fluids
1070-6631,
7
(
7
), pp.
1695
1702
.
13.
Leibovich
,
S.
, 1978, “
The Structure of Vortex Breakdown
,”
Annu. Rev. Fluid Mech.
0066-4189,
10
, pp.
221
246
.
14.
Goldshtik
,
M.
, and
Hussain
,
F.
, 1998, “
Analysis of Inviscid Vortex Breakdown in a Semi-infinite Pipe
,”
Fluid Dyn. Res.
0169-5983,
23
, pp.
189
234
.
15.
Mauri
,
S.
,
Kueny
,
J.-L.
, and
Avellan
,
F.
, 2004, “
Werlé-Legendre Separation in a Hydraulic Machine Draft Tube
,”
ASME J. Fluids Eng.
0098-2202,
126
, pp.
976
980
.
16.
International Electrotechnical Commision
, 1999, “
Hydraulic Turbines, Storage Pumps and Pump-Turbines—Model Acceptance Tests
,”
International Standard IEC 60193
,
2nd ed
.
17.
Ciocan
,
G. D.
, 1998, “
Contribution à l’Analyse des Ecoulements 3D Complexes en Turbomachines
,” Ph.D. thesis, Institut National Polytechnique de Grenoble, Grenoble, France.
18.
Ciocan
,
G. D.
,
Avellan
,
F.
, and
Kueny
,
J.-L.
, 2000, “
Optical Measurement Techniques for Experimental Analysis of Hydraulic Turbines Rotor-Stator Interaction
,” FEDSM2000-11056,
Proceedings of the ASME 2000 Fluids Engineering Division Summer Meeting
,
Boston, MA
.
19.
Batchelor
,
G. K.
, 1964, “
Axial Flow in Trailing Line Vortices
,”
J. Fluid Mech.
0022-1120,
20
(
4
), pp.
645
658
.
20.
Alekseenko
,
S. V.
,
Kuibin
,
P. A.
,
Okulov
,
V. L.
, and
Shtork
,
S. I.
, 1999, “
Helical Vortices in Swirl Flow
,”
J. Fluid Mech.
0022-1120,
382
, pp.
195
243
.
21.
Wang
,
S.
, and
Rusak
,
A.
, 1997, “
The Dynamics of a Swirling Flow in a Pipe and Transition to Axisymmetric Vortex Breakdown
,”
J. Fluid Mech.
0022-1120,
340
, pp.
177
223
.
22.
Lu
,
P.
, and
Semião
,
V.
, 2003, “
A New Second-Moment Closure Approach for Turbulent Swirling Confined Flow
,”
Int. J. Numer. Methods Fluids
0271-2091,
41
, pp.
133
150
.
23.
Shtern
,
V.
, and
Hussain
,
F.
, 2003, “
Effect of Deceleration on Jet Instability
,”
J. Fluid Mech.
0022-1120,
480
, pp.
283
309
.
24.
Buntine
,
J. D.
, and
Saffman
,
P. G.
, 1995, “
Inviscid Swirling Flows and Vortex Breakdown
,”
Proc. R. Soc. London, Ser. A
1364-5021,
449
, pp.
139
153
.
25.
Tsai
,
C.-Y.
, 1980, “
Examination of Group-Velocity Criterion for Breakdown of Vortex Flow in a Divergent Duct
,”
Phys. Fluids
0031-9171,
23
(
5
), pp.
864
870
.
26.
Visual Numerics, 2003, “
IMSL Fortran Library User’s Guide. Mathematical Functions in Fortran
.”
27.
Gupta
,
A. K.
,
Lilley
,
D. G.
, and
Syred
,
N.
, 1984,
Swirl Flows
,
Abacus Press
,
Cambridge, MA
.
28.
Hall
,
M. G.
, 1972, “
Vortex Breakdown
,”
Annu. Rev. Fluid Mech.
0066-4189,
4
, pp.
195
218
.
29.
Leibovich
,
S.
, 1984, “
Vortex Stability and Breakdown: Survey and Extension
,”
AIAA J.
0001-1452,
22
(
9
), pp.
1192
1206
.
30.
Rusak
,
Z.
,
Wang
,
S.
, and
Whiting
,
C. H.
, 1998, “
The Evolution of a Perturbed Vortex in a Pipe to Axisymmetric Vortex Breakdown
,”
J. Fluid Mech.
0022-1120,
366
, pp.
211
237
.
You do not currently have access to this content.