We present a numerical study of Dean instability for non-Newtonian fluids in a laminar 180deg curved-channel flow of rectangular cross section. A methodology based on the Papanastasiou model (Papanastasiou, T. C., 1987, J. Rheol., 31(5), pp. 385–404) was developed to take into account the Bingham-type rheological behavior. After validation of the numerical methodology, simulations were carried out (using FLUENT CFD code) for Newtonian and non-Newtonian fluids in curved channels of square or rectangular cross section and for a large aspect and curvature ratios. A criterion based on the axial velocity gradient was defined to detect the instability threshold. This criterion was used to optimize the grid geometry. The effects of curvature and aspect ratio on the Dean instability are studied for all fluids, Newtonian and non-Newtonian. In particular, we show that the critical value of the Dean number decreases with increasing curvature ratio. The variation of the critical Dean number with aspect ratio is less regular. The results are compared to those for Newtonian fluids to emphasize the effect of the power-law index and the Bingham number. The onset of Dean instability is delayed with increasing power-law index. The same delay is observed in Bingham fluids when the Bingham number is increased.

1.
Dean
,
W. R.
, 1927, “
Note on the Motion of Fluid in a Curved Pipe
,”
Philos. Mag.
0031-8086,
4
, pp.
208
223
.
2.
Eustice
,
J.
, 1911, “
Experiments of Streamline Motion in Curved Pipes
,”
Proc. R. Soc. London, Ser. A
0950-1207,
A 85
(
1
), pp.
19
31
.
3.
Berger
,
S. A.
,
Talbot
,
L.
, and
Yao
,
L. S.
, 1983, “
Flow in Curved Pipes
,”
Annu. Rev. Fluid Mech.
0066-4189,
15
, pp.
461
512
.
4.
Cheng
,
K. C.
, and
Akiyama
,
M.
, 1970, “
Laminar Forced Convection Heat Transfer in Curved Rectangular Channels
,”
Int. J. Heat Mass Transfer
0017-9310,
13
, pp.
471
490
.
5.
Cheng
,
K. C.
,
Nakayama
,
J.
, and
Akiyama
,
M.
, 1977, “
Effects of Finite and Infinite Aspect Ratios on Flow Patterns in Curved Rectangular Channels
,” Flow Visualization International Symposium, Tokyo, pp.
181
186
.
6.
Sugiyama
,
S.
,
Hayashi
,
T.
, and
Yamazaki
,
K.
, 1983, “
Flow Characteristics in the Curved Rectangular Channels (Visualization of Secondary Flow)
,”
Bull. JSME
0021-3764,
26
(
216
), pp.
964
969
.
7.
Chandratilleke
,
T. T.
, and
Nursubyakto
, 2003, “
Numerical Prediction of Secondary Flow and Convective Heat Transfer in Externally Heated Curved Rectangular Ducts
,”
Int. J. Therm. Sci.
1290-0729,
47
, pp.
187
198
.
8.
Cho
,
Y. I.
, and
Hartnett
,
J. P.
, 1982, “
Non-Newtonian Fluids in Circular Pipe Flow
,”
Adv. Heat Transfer
0065-2717,
15
, pp.
59
141
.
9.
Chen
,
S. S.
,
Fan
,
L. T.
, and
Hwang
,
C. L.
, 1970, “
Entrance Region Flow of the Bingham Fluid in a Circular Pipe
,”
AIChE J.
0001-1541,
16
(
2
), pp.
293
299
.
10.
Varadis
,
G. C.
,
Dougher
,
J.
, and
Kumar
,
S.
, 1993, “
Entrance Pipe Flow and Heat Transfer for a Bingham Plastic
,”
Int. J. Heat Mass Transfer
0017-9310,
36
(
3
), pp.
543
552
.
11.
Agrawal
,
S.
,
Jayaraman
,
G.
,
Srivastava
,
V. K.
, and
Nigam
,
K. D. P.
, 1993, “
Power Law Fluids in a Circular Curved Tube. Part I. Laminar Flow
,”
Polym.-Plast. Technol. Eng.
0360-2559,
32
(
6
), pp.
595
614
.
12.
Hsu
,
C. F.
, and
Patanker
,
S. V.
, 1982, “
Analysis of Laminar Non-Newtonian Flow and Heat Transfer in Curved Tubes
,”
AIChE J.
0001-1541,
24
(
4
), pp.
610
616
.
13.
Shanthini
,
W.
, and
Nandakumar
,
K.
, 1986, “
Bifurcation Phenomena of Generalized Newtonian Fluids in Curved Rectangular Ducts
,”
J. Non-Newtonian Fluid Mech.
0377-0257,
22
, pp.
35
60
.
14.
Kumar
,
K. R.
,
Rankin
,
G. W.
, and
Sridhar
,
K.
, 1989, “
Fully Developed Flow of Power Law Fluids in Curved Ducts With Heat Transfer
,”
Numer. Heat Transfer, Part A
1040-7782, Part A,
16
, pp.
101
118
.
15.
Metzner
,
A. B.
, and
Reed
,
J. C.
, 1955, “
Flow of Non-Newtonian Fluids: Correlation of the Laminar, Transition, and Turbulent-Flow Regions
,”
AIChE J.
0001-1541,
1
, pp.
434
440
.
16.
Shan
,
R. K.
, and
London
,
A. L.
, 1978,
Laminar Flow Forced Convection in Ducts
,
Academic Press
, New York.
17.
Papanastasiou
,
T. C.
, 1987, “
Flow of Materials With Yield
,”
J. Rheol.
0148-6055,
31
(
5
), pp.
385
404
.
18.
Bercovier
,
M.
, and
Engelman
,
M.
, 1980. “
A Finite Element Method for Incompressible Non-Newtonian Flows
,”
J. Comput. Phys.
0021-9991
36
, pp.
313
326
.
19.
O’Donovan
,
E. J.
, and
Tanner
,
R. I.
, 1984, “
Numerical Study of the Bingham Squeeze Film Problem
,”
J. Non-Newtonian Fluid Mech.
0377-0257,
15
, pp.
75
83
.
20.
Nouar
,
C.
,
Devienne
,
R.
, and
Lebouche
,
M.
, 1994, “
Convection Thermique Pour un Fluide de Herschel-Bulkley dans la Région d’Entrée d’une Conduite
,”
Int. J. Heat Mass Transfer
0017-9310,
37
(
1
), pp.
1
12
.
21.
Itô
,
H.
, 1970, “
Laminar Flow in Curved Pipes
,”
Rep. Inst. High Speed Mech.
, Jpn.,
22
(
224
), pp.
161
180
.
22.
Bara
,
B.
,
Nandakumar
,
K.
, and
Masliyah
,
J. H.
, 1992, “
An Experimental and Numerical Study of the Dean Problem: Flow Development Towards Two-Dimensional Multiple Solutions
,”
J. Fluid Mech.
0022-1120
244
, pp.
339
376
.
23.
Ghia
,
K. N.
, and
Sokhey
,
J. S.
, 1977, “
Laminar Incompressible Viscous Flow in Curved Ducts of Rectangular Cross-Section
,”
ASME J. Fluids Eng.
0098-2202,
99
, pp.
640
648
.
24.
Hille
,
P.
,
Vehrenkamp
,
R.
, and
Schulz-Dubois
,
E. O.
, 1985, “
The Development and Structure of Primary and Secondary Flow in a Curved Square Duct
,”
J. Fluid Mech.
0022-1120,
151
, pp.
219
241
.
25.
Thangam
,
S.
, and
Hur
,
N.
, 1990, “
Laminar Secondary Flows in Curved Rectangular Ducts
,”
J. Fluid Mech.
0022-1120,
217
, pp.
421
440
.
26.
Komiyama
,
Y.
,
Mikami
,
F.
,
Okui
,
K.
, and
Hori
,
T.
, 1984, “
Laminar Forced Convection Heat Transfer in Curved Channels of Rectangular Cross-Section
,”
Trans. Jpn. Soc. Mech. Eng., Ser. B
0387-5016,
B 50
(
450
), pp.
424
434
.
27.
Ranade
,
V. R.
, and
Ulbrecht
,
J. J.
, 1982, “
Velocity Profiles of Newtonian and Non-Newtonian Toroidal Flows Measured by a LDA Technique
,”
Chem. Eng. Commun.
0098-6445,
20
, pp.
253
272
.
28.
Alexandrou
,
A. N.
,
McGilvreay
,
T. M.
, and
Burgos
,
G.
, 2001, “
Steady Herschel-Bulkley Fluid Flow in Three-Dimensional Expansions
,”
J. Non-Newtonian Fluid Mech.
0377-0257,
100
, pp.
77
96
.
You do not currently have access to this content.