A computational fluid dynamics-based design system with the integration of three blade design approaches, automatic mesh generator and CFD codes enables a quick and efficient design optimization of turbine components. It is applied to a Francis turbine rehabilitation project with strict customer requirements to provide over 3% increase in peak efficiency, 13% upgrade in power, and improved cavitation characteristics. Extensive turbulent flow simulations are performed for both the existing and new turbines at design and off design conditions. In order to take into account the interactions between different components, particularly the effects between the rotating and stationary parts, coupling calculations based on the implicit coupling method under multiple frames of reference are carried out for the entire turbine model. As a result, the runner and guide vanes are optimized to the greatest extent, and the stay vanes are locally modified with a possible minimum cost under the geometrical constraints of the existing machine. The performance of the new design is verified by model tests, and exceeds required improvements.

1.
Vu
,
T. C.
, and
Shyy
,
W.
, 1994, “
Performance Prediction by Viscous Flow Analysis for Francis Turbine Runner
,”
ASME J. Fluids Eng.
0098-2202,
116
, pp.
116
120
.
2.
Ruprecht
,
A.
,
Heitele
,
M.
,
Helmrich
,
T.
,
Faigle
,
P.
, and
Morser
,
W.
, 1998, “
Numerical Modelling of Unsteady Flow in a Francis Turbine
,”
Proceedings of XIX IAHR Symposium on Hydraulic Machinery and Cavitation
, Singapore, pp.
202
209
.
3.
Sabourin
,
M.
,
Labrecque
,
Y.
, and
Henau
,
V.
, 1996, “
From Components to Complete Turbine Numerical Simulation
,”
Proceedings of 18th IAHR Symposium on Hydraulic Machinery and Cavitation
, Iberdrola, pp.
248
256
.
4.
Song
,
C. C. S.
,
Chen
,
X.
,
Ikohagi
,
T.
,
Sato
,
J.
,
Shinmei
,
K.
, and
Tani
,
K.
, 1996, “
Simulation of Flow Through Francis Turbine By LES Method
,”
Proceedings of 18th IAHR Symposium on Hydraulic Machinery and Cavitation
, Iberdrola, pp.
267
276
.
5.
Byskov
,
R. K.
,
Jacobsen
,
C. B.
, and
Pedersen
,
N.
, 2003, “
Flow in a Centrifugal Pump Impeller at design and Off-Design Conditions-Part II: Large Eddy Simulations
,”
ASME J. Fluids Eng.
0098-2202,
125
(
1
), pp.
73
83
.
6.
Goto
,
A.
,
Nohmi
,
M.
,
Sakurai
,
T.
, and
Sogawa
,
Y.
, 2002, “
Hydrodynamic Design System for Pumps Based on 3-D CAD, CFD, and Inverse Design Method
,”
ASME J. Fluids Eng.
0098-2202,
124
, pp.
329
335
.
7.
Goto
,
Z.
, and
Zangeneh
,
M.
, 2002, “
Hydrodynamic Design of Pump Diffuser Using Inverse Design Method and CFD
,”
ASME J. Fluids Eng.
0098-2202,
124
(
6
), pp.
319
328
.
8.
Zangeneh
,
M.
, 1991, “
A Compressible Three Dimensional Blade Design Method for Radial and Mixed Flow Turbomachinery Blades
,”
Int. J. Numer. Methods Fluids
0271-2091,
13
, pp.
599
624
.
9.
Zangeneh
,
M.
,
Schleer
,
M.
,
Ploger
,
F.
,
Hong
,
S.
,
Roduner
,
C.
,
Ribi
,
B.
, and
Abhari
,
R. S.
, 2004, “
Investigation of an Inversely Designed Centrifugal Compressor Stage- Part I: Design and Numerical Verification
,”
ASME J. Turbomach.
0889-504X,
126
(
1
), pp.
73
81
.
10.
Jasen
,
W.
, and
Kirschner
,
A. M.
, 1975, “
Impeller Design Method for Centrifugal Compressor
,” NASA SP304, NASA, Washington, D.C.
11.
Wu
,
J.
,
Antaki
,
J. F.
,
Wagner
,
W.
,
Snyder
,
T.
,
Paden
,
B.
, and
Borovetz
,
H.
, 2005, “
Elimination of Adverse Leakage Flow in a Miniature Pediatric Centrifugal Blood Pump by Computational Fluid Dynamics-Based Design Optimization
,”
ASAIO J.
1058-2916,
51
, pp.
636
643
.
12.
Bouchet
,
D. P.
,
Tribes
,
C.
,
Trépanier
,
J. Y.
, and
Vu
,
T. C.
, 2004, “
Hydrodynamic Optimization in Rehabilation Project
,”
Proceedings of the 22nd IAHR Symposium on Hydraulic Machinery and Systems
,
Stockholm
,
Sweden
.
13.
Schilling
,
R.
,
Thum
,
S.
,
Müller
,
N.
,
Krämer
,
S.
,
Riedel
,
N.
, and
Moser
,
W.
, 2002, “
Design Optimization of Hydraulic Machinery Bladings by Multi Level CFD-Technique
,”
Proceedings of the 21st IAHR Symposium on Hydraulic Machinery and Systems
,
Lausanne
,
Switzerland
.
14.
Rogers
,
D. F.
, 2001,
An Introduction to NURBS: With Historical Perspective
,
Morgan Kaufmann
,
San Francisco
.
15.
Tanabe
,
S.
,
Toshima
,
M.
,
Sato
,
J.
,
Moriguchi
,
S.
,
Mori
,
S.
,
Kawamoto
,
K.
, and
Yamabe
,
M.
, 1992, “
Experience with Flow Analysis as Practical Design Tools
,”
Proceedings 16th IAHR Symposium on Hydraulic Machinery and Cavitation
,
São Paulo, Brazil
, pp.
271
280
.
16.
Wu
,
J.
,
Wu
,
Y.
, and
Mei
,
Z.
, 1989, “
Inviscid-Viscous Interaction for Internal Flow of a Francis Turbine Runner
,”
Proceedings of the 3rd Japan-China Joint Conference on Fluid Machinery
,
Osaka
,
Japan
, pp.
361
368
.
17.
Shyy
,
W.
,
Thakur
,
S.
, and
Wright
,
J.
, 1992, “
Second-Order Upwind and Central Difference Schemes for Recirculating Flow Computation
,”
AIAA J.
0001-1452,
30
, pp.
923
32
.
18.
Thompson
,
J. F.
,
Soni
,
B. K.
, and
Weatherill
,
N. P.
, 1999,
Handbook of Grid Generation
,
CRC Press
,
Boca Raton, FL
.
19.
CD Adapco Group, 2001, STAR-CD Version 3.15, Methodology, Computational Dynamics Limited.
You do not currently have access to this content.