Abstract

The present effort is the development of a multiscale modeling, simulation methodology for investigating complex phenomena arising from flowing fiber suspensions. The present approach is capable of coupling behaviors from the Kolmogorov turbulence scale through the full-scale system in which a fiber suspension is flowing. Here the key aspect is adaptive hierarchical modeling. Numerical results are presented for which focus is on fiber floc formation and destruction by hydrodynamic forces in turbulent flows. Specific consideration was given to dynamic simulations of viscoelastic fibers in which the fluid flow is predicted by a method that is a hybrid between direct numerical simulations and large eddy simulation techniques and fluid fibrous structure interactions will be taken into account. Dynamics of simple fiber networks in a shearing flow of water in a channel flow illustrate that the shear-induced bending of the fiber network is enhanced near the walls. Fiber-fiber interaction in straight ducts is also investigated and results show that deformations would be expected during the collision when the surfaces of flocs will be at contact. Smaller velocity magnitudes of the separated fibers compare to the velocity before collision implies the occurrence of an inelastic collision. In addition because of separation of vortices, interference flows around two flocs become very complicated. The results obtained may elucidate the physics behind the breakup of a fiber floc, opening the possibility for developing a meaningful numerical model of the fiber flow at the continuum level where an Eulerian multiphase flow model can be developed for industrial use.

1.
Scott
,
W. E.
, 1996,
Principles of Wet End Chemistry
,
Tappi Press
,
Atlanta
, Chaps. 6 and 16.
2.
Britt
,
K. W.
, and
Unbehend
,
J. E.
, 1976, “
New Methods for Monitoring Retention
,”
Tappi J.
0734-1415,
59
(
2
), pp.
67
70
.
3.
Wu
,
J.
,
Bratko
,
D.
,
Blanch
,
H. W.
, and
Prausnitz
,
J. M
, 2000, “
Effect of Three-Body Forces on the Phase Behavior of Charged Colloids
,”
J. Chem. Phys.
0021-9606,
113
, pp.
3360
3365
.
4.
Bennington
,
C. P. J.
,
Kerekes
,
R. J.
, and
Grace
,
J. R.
, 1990, “
The Yield Stress of Fiber Suspensions
,”
Can. J. Chem. Eng.
0008-4034,
68
, pp.
748
757
.
5.
Chaouche
,
M.
, and
Koch
,
D. L.
, 2001, “
Rheology of Non-Brownian Rigid Fiber Suspensions With Adhesive Contacts
,”
J. Rheol.
0148-6055,
45
, pp.
369
382
.
6.
Meyer
,
R.
, and
Wahren
,
D.
, 1964, “
On the Elastic Properties of Three-Dimensional Fiber Networks
,”
Sven. Papperstidn.
0283-6831,
67
, pp.
432
436
.
7.
Soszynski
,
R. M.
, and
Kerekes
,
R. J.
, 1988, “
Elastic Interlocking of Nylon Fibers Suspended in Liquid, Part 1. Nature of Cohesion Among Fibers
,”
Nord. Pulp Pap. Res. J.
0283-2631,
3
, pp.
172
179
.
8.
Zhao
,
R. H.
, and
Kerekes
,
R. J.
, 1993, “
The Effects of Suspending Liquid Viscosity on Fiber Flocculation
,”
Tappi J.
0734-1415,
76
(
2
), pp.
183
188
.
9.
Beghello
,
L.
, 1998, “
The Tendency of Fibers to Build Flocs
,” Doctoral thesis, Faculty of Chemical Engineering, Åbo Akademi University, Finland.
10.
Baines
,
W. D.
, 1959, “
Laminar Flow of Dilute Fiber Suspension
,”
Sven. Papperstidn.
0283-6831,
62
, pp.
823
830
.
11.
Head
,
V.
, and
Durst
,
R.
, 1957, “
Stock Slurry Hydraulics
,”
Tappi J.
0734-1415,
40
(
12
), pp.
958
966
.
12.
Myréen
,
B.
, 1989, “
Modeling the Flow of Pulp Suspensions in Pipes, Part I
,”
Pap. Puu
0031-1243,
71
(
5
), pp.
497
504
.
13.
Durst
,
R.
, and
Jenness
,
L.
, 1954, “
The Flow Properties of Paper Pulp Stocks. I. Relationship of Sheer Value to Pipe Friction for Bleached Sulphite Pulp Slurries
,”
Tappi J.
0734-1415,
37
(
10
), pp.
420
427
.
14.
Huhtanen
,
J. P.
, 1998, “
Non-Newtonian Flows in Paper Making
,” Licentiate thesis, Tampere University of Technology, Finland.
15.
Hämäläinen
,
J. P.
, 1993, “
Mathematical Modeling and Simulation of Fluid Flows in the Headbox of Paper Machines
,” Doctoral thesis, University of Jyväskylä, Finland.
16.
Damani
,
R.
,
Powel
,
R.
, and
Hagen
,
N.
, 1993, “
Viscoelastic Characterization of Medium Consistency Pulp Suspensions
,”
Can. J. Chem. Eng.
0008-4034,
71
, pp.
676
685
.
17.
Swerin
,
A.
,
Powell
,
R.
, and
Ödberg
,
L.
, 1992, “
Linear and Nonlinear Dynamic Viscoelasticity of Pulp Fiber Suspensions
,”
Nord. Pulp Pap. Res. J.
0283-2631,
3
, pp.
126
132
.
18.
Wikström
,
T.
, 2002, “
Flow and Rheology of Pulp Suspensions at Medium Consistency
,” Doctoral thesis, Chalmer’s University of Technology, Sweden.
19.
Lindroos
,
K.
,
Piirto
,
M.
, and
Huhtanen
,
J. P.
, 2003, “
The Effect of Fibers on Turbulent Quantities in Backward Facing Step Channel Flow: Measurements and Numerical Simulations
,”
Third International Symposium on Turbulence and Shear Flow Phenomena
,
Sendai
, Japan, pp.
233
238
.
20.
Kuhn
,
D. C. S.
, and
Sullivan
,
P.
, 2001, “
Analysis and Measurement of the Flocculation Intensity of Flowing Pulp Suspensions
,”
TAPPI Papermakers Conference
, Cincinnati, OH, March 11–14, Session 14,
TAPPI Press
,
Atlanta
.
21.
Pope
,
S. B.
, 2000,
Turbulent Flows
,
Cambridge Univ. Press
,
Cambridge
.
22.
Peake
,
N.
, and
Langre
,
E. de
, 2005, “
Special Issue on Fluid-Plate Interactions
,”
J. Fluids Struct.
0889-9746,
20
(
7
), p.
891
.
23.
Honkanen
,
M.
,
Koohestany
,
A.
,
Hatunen
,
T.
,
Saarenrinne
,
P.
, and
Zamankhan
,
P.
, 2005, “
Large Eddy Simulation and PIV Experiments of a Two Phase Air-Water Mixer
,”
Proceedings of ASME Fluids Engineering Summer Conference
,
Houston, ASME
,
New York
, Paper No. FEDSM2005-77185.
24.
Hughes
,
T. J. R.
,
Mazzei
,
L.
, and
Jansen
,
K. E.
, 2000, “
Large Eddy Simulation and the Variational Multiscale Method
,”
Comput. Visual. Sci.
,
3
(
1-2
), pp.
47
59
.
25.
Collis
,
S. C.
, 2001, “
Monitoring Unresolved Scales in Multiscale Turbulence Modeling
,”
Phys. Fluids
1070-6631,
13
, pp.
1800
1806
.
26.
Billington
,
E. W.
, and
Tate
,
A.
, 1981,
The Physics of Deformation and Flow
,
McGraw-Hill
,
New York
.
27.
Libersky
,
L. D.
,
Petschek
,
A. G.
,
Carney
,
T. C.
,
Hipp
,
J. R.
, and
Allahdadi
,
F. A.
, 1995, “
High Strain Lagrangian Hydrodynamics
,”
J. Comp. Physiol.
0373-0859,
109
, pp.
67
75
.
28.
Mase
,
G. E.
, 1970,
Continuum Mechanics
,
McGraw-Hill
,
New York
.
29.
Hughes
,
T. J. R.
, and
Brooks
,
N. A.
, 1979, “
A Multi-Dimensional Upwind Scheme With no Crosswind Diffusion
,” In
Hughes
,
T. J. R.
, ed.
Finite Element Methods for Convection Dominated Flows
,
ASME
,
New York
, AMD,
34
, pp.
19
35
.
30.
Zauscher
,
S.
, and
Klingenberg
,
D. J.
, 2001, “
Friction Between Cellulose Surfaces Measured with Colloidal Probe Microscopy
,”
Colloids Surf., A
0927-7757,
178
, pp.
213
229
.
31.
Swerin
,
A.
, 1998, “
Rheological Properties of Cellulosic Fibre Suspensions Flocculated by Cationic Polyacrylamides
,”
Colloids Surf., A
0927-7757,
133
, pp.
279
294
.
32.
Zamankhan
,
P.
, and
Bordbar
,
M. H.
, 2006, “
Complex Flow Dynamics in Dense Granular Flows—Part 1: Experimentation
,”
ASME J. Appl. Mech.
0021-8936,
73
, pp.
648
657
.
33.
Goldsmith
,
W.
, 2001,
Impact, the Technology and Physics Behavior of Colliding Solids
,
Dover
,
New York
.
34.
Allen
,
M. P.
, 1992,
Computer Simulation of Liquids
,
Oxford University Press
,
London
.
You do not currently have access to this content.