A numerical study of the axisymmetric flow in a cylindrical chamber of height H is presented, which is driven by a bottom disk rotating at angular velocity Ω. However, unlike most previous studies, the present rotating disk is of smaller radius than the bottom-wall. The boundary curves for the onset of vortex breakdown are presented using different definitions of the nondimensional parameters, depending on whether the cylinder radius R or the disk radius rd is used as the length scale. The study shows that the boundary curves are best correlated when presented in terms of the Reynolds number Ωrd2υ, aspect ratio HR, and cylinder-to-disk ratio Rrd. The cylinder-to-disk ratio Rrd up to 1.6 is found to have noticeable effect on vortex breakdown; this is attributed to the change of effective aspect ratio. The contours of streamline, angular momentum, and azimuthal vorticity are presented and compared with those of whole bottom-wall rotation.

1.
Escudier
,
M. P.
, 1984, “
Observations of the Flow Produced in a Cylindrical Container by a Rotating Endwall
,”
Exp. Fluids
0723-4864,
2
, pp.
189
194
.
2.
Lopez
,
J. M.
, 1990, “
Axisymmetric Vortex Breakdown, Part 1: Confined Swirling Flow
,”
J. Fluid Mech.
0022-1120,
221
, pp.
533
552
.
3.
Brown
,
G. L.
, and
Lopez
,
J. M.
, 1990, “
Axisymmetric Vortex Breakdown, Part 2: Physical Mechanisms
,”
J. Fluid Mech.
0022-1120,
221
, pp.
553
576
.
4.
Spohn
,
A.
,
Mory
,
M.
, and
Hopfinger
,
E. J.
, 1989, “
Observations of Vortex Breakdown in an Open Cylindrical Container by a Rotating Bottom
,”
Exp. Fluids
0723-4864,
14
, pp.
70
77
.
5.
Spohn
,
A.
,
Mory
,
M.
, and
Hopfinger
,
E. J.
, 1998, “
Experiments on Vortex Breakdown in a Confined Flow Generated by a Rotating Disc
,”
J. Fluid Mech.
0022-1120,
370
, pp.
73
99
.
6.
Valentine
,
D. T.
, and
Jahnke
,
C. C.
, 1994, “
Flows Induced in a Cylinder With Both End Walls Rotating
,”
Phys. Fluids
1070-6631,
6
, pp.
2702
2710
.
7.
Lopez
,
J. M.
, 1995, “
Unsteady Swirling Flow in an Enclosed Cylinder With Reflectional Symmetry
,”
Phys. Fluids
1070-6631,
7
, pp.
2700
2714
.
8.
Mullin
,
T.
,
Tavener
,
S. J.
, and
Cliffe
,
K. A.
, 1998, “
On the Creation of Stagnation Points in a Rotating Flow
,”
ASME J. Fluids Eng.
0098-2202,
120
, pp.
685
689
.
9.
Mullin
,
T.
,
Kobine
,
J. J.
,
Tavener
,
S. J.
, and
Cliffe
,
K. A.
, 2000, “
On the Creation of Stagnation Points Near Straight and Sloped Walls
,”
Phys. Fluids
1070-6631,
12
, pp.
425
431
.
10.
Husain
,
H. S.
,
Shtern
,
V.
, and
Hussain
,
F.
, 2003, “
Control of Vortex Breakdown by Addition of Near-Axial Swirl
,”
Phys. Fluids
1070-6631,
15
, pp.
271
279
.
11.
Yu
,
P.
,
Lee
,
T. S.
,
Zeng
,
Y.
, and
Low
,
H. T.
, 2006, “
Effects of Conical Lids on Vortex Breakdown in an Enclosed Cylindrical Chamber
,”
Phys. Fluids
1070-6631,
18
, p.
117101
.
12.
Piva
,
M.
, and
Meiburg
,
E.
, 2005, “
Steady Axisymmetric Flow in an Open Cylindrical With a Partially Rotating Bottom Wall
,”
Phys. Fluids
1070-6631,
17
, p.
063603
.
13.
Yu
,
P.
,
Lee
,
T. S.
,
Zeng
,
Y.
, and
Low
,
H. T.
, 2007, “
Characterization of Flow Behavior in an Enclosed Cylinder With a Partially Rotating End-Wall
,”
Phys. Fluids
1070-6631,
19
, p.
057104
.
14.
Yu
,
P.
,
Lee
,
T. S.
,
Zeng
,
Y.
, and
Low
,
H. T.
, 2005, “
Fluid Dynamics of a Micro-Bioreactor for Tissue Engineering
,”
Fluid Dyn. Mater. Process.
1555-256X,
1
, pp.
235
246
.
15.
Kostov
,
Y.
,
Harms
,
P.
,
Randers-Eichhorn
,
L.
, and
Rao
,
G.
, 2001, “
Low-Cost Micro-Bioreactor for High-Throughput Bioprocessing
,”
Biotechnol. Bioeng.
0006-3592,
72
, pp.
346
352
.
16.
Thouas
,
G. A.
,
Sheridan
,
J.
, and
Hourigan
,
K.
, 2007, “
A Bioreactor Model of Mouse Tumor Progression
,”
J. Biomed. Biotechnol.
1110-7243,
2007
, p.
32754
.
17.
Dusting
,
J.
,
Sheridan
,
J.
, and
Hourigan
,
K.
, 2006, “
A Fluid Dynamic Approach to Bioreactor Design for Cell and Tissue Culture
,”
Biotechnol. Bioeng.
0006-3592,
94
, pp.
1197
1208
.
18.
Yu
,
P.
,
Lee
,
T. S.
,
Zeng
,
Y.
, and
Low
,
H. T.
, 2005, “
Effect of Vortex Breakdown on Mass Transfer in a Cell Culture Bioreactor
,”
Mod. Phys. Lett. B
0217-9849,
19
, pp.
1543
1546
.
19.
Mununga
,
L.
,
Hourigan
,
K.
,
Thompson
,
M. C.
, and
Leweke
,
T.
, 2004, “
Confined Flow Vortex Breakdown Control Using a Small Rotating Disk
,”
Phys. Fluids
1070-6631,
16
, pp.
4750
4753
.
20.
Kumar
,
S.
,
Wittmann
,
C.
, and
Heinzle
,
E.
, 2004, “
Minibioreactors
,”
Biotechnol. Lett.
0141-5492,
26
, pp.
1
10
.
21.
Marques
,
F.
,
Lopez
,
J. M.
, and
Shen
,
J.
, 2002, “
Mode Interactions in an Enclosed Swirling Flow: A Double Hopf Bifurcation Between Azimuthal Wavenumbers 0 and 2
,”
J. Fluid Mech.
0022-1120,
455
, pp.
263
281
.
22.
Gelfgat
,
A. Yu.
,
Bar-Yoseph
,
P. Z.
, and
Solan
,
A.
, 2001, “
Three-Dimensional Instability of Axisymmetric Flow in a Rotating Lid-Cylinder Enclosure
,”
J. Fluid Mech.
0022-1120,
438
, pp.
363
377
.
23.
Blackburn
,
H. M.
, and
Lopez
,
J. M.
, 2000, “
Symmetry Breaking of the Flow in a Cylinder Driven by a Rotating Endwall
,”
Phys. Fluids
1070-6631,
12
, pp.
2698
2701
.
24.
Blackburn
,
H. M.
, and
Lopez
,
J. M.
, 2002, “
Modulated Rotating Waves in an Enclosed Swirling Flow
,”
J. Fluid Mech.
0022-1120,
465
, pp.
33
58
.
25.
Marques
,
F.
, and
Lopez
,
J. M.
, 2001, “
Precessing Vortex Breakdown Mode in an Enclosed Cylinder Flow
,”
Phys. Fluids
1070-6631,
13
, pp.
1679
1682
.
26.
Lopez
,
J. M.
, 2006, “
Rotating and Modulated Rotating Waves in Transitions of an Enclosed Swirling Flow
,”
J. Fluid Mech.
0022-1120,
553
, pp.
323
346
.
27.
Gelfgat
,
A. Yu.
,
Bar-Yoseph
,
P. Z.
, and
Solan
,
A.
, 1996, “
Stability of Confined Swirling Flow With and Without Vortex Breakdown
,”
J. Fluid Mech.
0022-1120,
311
, pp.
1
36
.
You do not currently have access to this content.