The two-step method for optimizing net positive suction head required (NPSHr) of axial-flow pumps is proposed in this paper. First, the NPSHr at the impeller tip is optimized with impeller diameter based on experimental data of 2D cascades in available wind tunnels. Then, it is optimized again with the velocity moment at the impeller outlet, which is expressed in terms of two parameters. The blade geometry is generated and flow details are clarified by using the radial equilibrium equation, actuator disk theory, and 2D vortex element method in the optimizing process. The NPSHr response surface has been established in terms of these two parameters. The results illustrate that the second optimization allows NPSHr to be reduced by 37.5% compared to the first optimization. Therefore, this two-step method is effective and expects to be applied in the axial-flow pump impeller blade design. The simulations of 3D turbulent flow with various cavitation models and related confirming experiments are going to be done in the axial-flow impellers designed with this method.

1.
Wislicenus
,
G. F.
, 1947,
Fluid Mechanics of Turbomachinery
,
McGraw-Hill
,
New York
.
2.
Stepanoff
,
A. J.
, 1948,
Centrifugal and Axial Flow Pumps
,
John Wiley & Sons
,
New York
, pp.
143
165
.
3.
Lazarkiewicz
,
S.
, and
Troskolanski
,
A. T.
, 1965,
Impellers Pumps
,
Pergamon
,
Oxford
, pp.
218
250
.
4.
Govida Rao
,
N. S.
, 1965, “
Studies on Certain Aspects of the Design of Axial and Mixed Flow Impellers
,”
Proceedings of the Symposium on Pump Design, Testing and Operation
,
National Engineering Laboratory
,
East Kilbride, Glasgow, UK
, April 12–14, Paper No. C1-2.
5.
Hay
,
N.
, and
Metcalfe
,
R.
, 1978, “
A Simple Method for the Selection of Axial Fan Blade Profiles
,”
Proc. Inst. Mech. Eng.
0020-3483,
192
, pp.
269
275
.
6.
Zaher
,
M. A.
, and
Ipenz
,
M.
, 2000, “
Preliminary Determination of Basic Dimensions for an Axial Flow Pump
,”
Proc. Inst. Mech. Eng., Part E, J. Process Mech. Eng.
,
214
(
3
), pp.
173
183
.
7.
Turton
,
R. K.
, 1994,
Rotodynamic Pump Design
,
Cambridge University Press
,
Cambridge
, pp.
124
138
.
8.
Lewis
,
R. I.
, 1996,
Turbomachinery Performance Analysis
,
Arnold
,
London
, pp.
82
142
.
9.
Fukaya
,
M.
,
Okamura
,
T.
,
Tamura
,
Y.
, and
Matsumoto
,
Y.
, 2003, “
Prediction of Cavitation Performance of Axial Flow Pump by Using Numerical Cavitating Flow Simulation with Bubble Flow Model
,”
Proceedings of the 5th International Symposium on Cavitation (CAV2003)
,
Osaka, Japan
, Nov. 1–4, Paper No. Cav03-OS-6-012.
10.
Bouziad
,
Y. A.
,
Farhat
,
M.
,
Guennoun
,
F.
,
Kueny
,
J. L.
, and
Miyagawa
,
K.
, 2003, “
Physical Modelling and Simulation of Leading Edge Cavitation-Application to an Industrial Inducer
,”
Proceedings of the 5th International Symposium on Cavitation (CAV2003)
,
Osaka, Japan
, Nov. 1–4, Paper No. Cav03-OS-6-014.
11.
Morell
,
D. A.
, and
Bowerman
,
R. D.
, 1953, “
Pressure Distributions on the Blade of Axial-Flow Propeller Pump
,”
Trans. ASME
0097-6822,
75
, pp.
1007
1013
.
12.
Miller
,
M. J.
,
Crouse
,
J. E.
, and
Sandercock
,
D. M.
, 1967, “
Summary of Experimental Investigation of Three Axial-Flow Pump Rotor Tested in Water
,”
ASME J. Eng. Power
0022-0825,
92
, pp.
589
599
.
13.
Murayama
,
M.
,
Yoshida
,
Y.
, and
Tsujimoto
,
Y.
, 2006, “
Unsteady Tip Leakage Vortex Cavitation Originating From the Tip Clearance of an Oscillating Hydrofoil
,”
ASME J. Fluids Eng.
0098-2202,
128
, pp.
421
429
.
14.
Mitchell
,
A. B.
, 1961, “
An Experimental Investigation of Cavitation Inception in the Rotor Blade Tip Region of an Axial Flow Pump
,” ARC CP-527.
15.
Straka
,
W. A.
, and
Farrell
,
K. J.
, 1992, “
The Effect of Spatial Wandering on Experimental Laser Velocimeter Measurements of the End-Wall Vortices in an Axial-Flow Pump
,”
Exp. Fluids
0723-4864,
13
, pp.
163
170
.
16.
Farrell
,
K. J.
, and
Billet
,
M. L.
, 1994, “
A Correlation of Leakage Vortex Cavitation in Axial-Flow Pumps
,”
ASME J. Fluids Eng.
0098-2202,
116
, pp.
551
557
.
17.
Laborde
,
R.
,
Chantrel
,
P.
, and
Mory
,
M.
, 1997, “
Tip Clearance and Tip Vortex Cavitation in an Axial Flow Pump
,”
ASME J. Fluids Eng.
0098-2202,
119
, pp.
680
685
.
18.
Wislicemus
,
G. F.
, 1956, “
Critical Considerations on Cavitation Limits of Centrifugal and Axial-Flow Pumps
,”
Trans. ASME
0097-6822,
78
, pp.
1707
1714
.
19.
Bowerman
,
R. D.
, 1956, “
The Design of Axial Flow Pumps
,”
Trans. ASME
0097-6822,
78
, pp.
1723
1734
.
20.
Lieblein
,
S.
, 1959, “
Loss and Stall Analysis of Compressor Cascades
,”
ASME J. Basic Eng.
0021-9223,
81
(
3
), pp.
387
397
.
21.
Guan
,
X. F.
, 1987,
Rotodynamic Pump Principal and Design
,
Mechanical Industry Press
,
Beijing
, in Chinese, Chaps. 4 and 6.
You do not currently have access to this content.