In this study, confined swirling flows of an aqueous surfactant solution due to a rotating disk in a cylindrical casing were investigated using a sectional flow visualization technique and a two-component laser Doppler velocimetry system. The concentrations of aqueous surfactant solutions (C14TASal) are 0.4wt%, 0.8wt%, and 1.2wt%. Rheological properties such as shear viscosity and first normal stress difference of the surfactant solution were measured with a rheometer. The patterns of secondary flow were classified using the Reynolds and elasticity numbers. We revealed that the projection formed near the center of the rotating disk moved up and down at a constant frequency for C14TASal0.8wt% and 1.2wt%, which has not been reported as far as we know. The effects of the Reynolds number, elasticity number, and aspect ratio on the velocity profiles were clarified. It was also found that the region of rigid body rotation existed at the higher Reynolds number tested for C14TASal0.4wt%.

1.
Hill
,
C. T.
, 1972, “
Nearly Viscometric Flow of Viscoelastic Fluids in the Disc and Cylinder System, II: Experimental
,”
Trans. Soc. Rheol.
0038-0032,
16
, pp.
213
245
.
2.
Day
,
C.
,
Harris
,
J. A.
,
Soria
,
J.
,
Boger
,
D. V.
, and
Welsh
,
M. C.
, 1996, “
Behavior of an Elastic Fluid in Cylindrical Swirling Flow
,”
Exp. Therm. Fluid Sci.
0894-1777,
12
, pp.
250
255
.
3.
Escudier
,
M. P.
, and
Cullen
,
L. M.
, 1996, “
Flow of a Shear-Thinning Liquid in a Cylindrical Container With a Rotating End Wall
,”
Exp. Therm. Fluid Sci.
0894-1777,
12
, pp.
381
387
.
4.
Moroi
,
T.
,
Itoh
,
M.
,
Fujita
,
K.
, and
Hamasaki
,
H.
, 2001, “
Viscoelastic Flow Due to a Rotating Disc Enclosed in a Cylindrical Casing (Influence of Aspect Ratio)
,”
JSME Int. J., Ser. B
1340-8054,
44
, pp.
465
473
.
5.
Itoh
,
M.
,
Suzuki
,
M.
, and
Moroi
,
T.
, 2006, “
Swirling Flow of a Viscoelastic Fluid in a Cylindrical Casing
,”
ASME Trans. J. Fluids Eng.
0098-2202,
128
, pp.
88
94
.
6.
Stokes
,
J. R.
,
Graham
,
L. J. W.
,
Lawson
,
N. J.
, and
Boger
,
D. V.
, 2001, “
Swirling Flow of Viscoelastic Fluids. Part 1. Interaction Between Inertia and Elasticity
,”
J. Fluid Mech.
0022-1120,
429
, pp.
67
115
.
7.
Stokes
,
J. R.
,
Graham
,
L. J. W.
,
Lawson
,
N. J.
, and
Boger
,
D. V.
, 2001, “
Swirling Flow of Viscoelastic Fluids. Part 2. Elastic Effects
,”
J. Fluid Mech.
0022-1120,
429
, pp.
117
153
.
8.
Stokes
,
J. R.
, and
Boger
,
D. V.
, 2000, “
Mixing of Viscous Polymer Liquids
,”
Phys. Fluids
1070-6631,
12
, pp.
1411
1416
.
9.
Tamano
,
S.
,
Itoh
,
M.
,
Ide
,
Y.
, and
Yokota
,
K.
, 2007, “
Vortex Shedding in Confined Swirling Flow of Polymer Solutions
,”
Phys. Fluids
1070-6631,
19
, No.
023103
, pp.1–8.
10.
Kramer
,
J. M.
, and
Johnson
,
M. W.
, 1972, “
Nearly Viscoelastic Flow in the Disk and Cylinder System. I: Theoretical
,”
Trans. Soc. Rheol.
0038-0032,
16
, pp.
197
212
.
11.
Xue
,
S.-C.
,
Phan-Thien
,
N.
, and
Tanner
,
R. I.
, 1999, “
Fully Three-Dimensional, Time-Dependent Numerical Simulations of Newtonian and Viscoelastic Swirling Flows in a Confined Cylinder. Part I. Method and Steady Flows
,”
J. Non-Newtonian Fluid Mech.
0377-0257,
87
, pp.
337
367
.
12.
Siginer
,
D. A.
, 2004, “
On the Nearly Viscometric Torsional Motion of Viscoelastic Liquids Between Shrouded Rotating Discs
,”
Trans. ASME, J. Appl. Mech.
0021-8936,
71
, pp.
305
313
.
13.
Chen
,
S.
, and
Rothstein
,
J. P.
, 2004, “
Flow of a Wormlike Micelle Solution Past a Falling Sphere
,”
J. Non-Newtonian Fluid Mech.
0377-0257,
116
, pp.
205
234
.
14.
Arora
,
K.
,
Sureshkumar
,
R.
,
Scheiner
,
M. K.
, and
Piper
,
J. L.
, 2002, “
Surfactant-Induced Effects on Turbulent Swirling Flows
,”
Rheol. Acta
0035-4511,
41
, pp.
25
34
.
15.
Wei
,
J.
,
Li
,
F.-C.
,
Yu
,
B.
, and
Kawaguchi
,
Y.
, 2006, “
Swirling Flow of a Viscoelastic Fluid With Free Surface—Part 1: Experimental Analysis of Vortex Motion by PIV
,”
ASME Trans. J. Fluids Eng.
0098-2202,
128
, pp.
69
76
.
16.
Li
,
F.-C.
,
Oishi
,
M.
,
Kawaguchi
,
Y.
,
Oshima
,
N.
, and
Oshima
,
M.
, 2007, “
Experimental Study on Symmetry Breaking in a Swirling Free-surface Cylinder Flow Influenced By Viscoelasticity
,”
Exp. Therm. Fluid Sci.
0894-1777,
31
, pp.
237
248
.
17.
Siginer
,
D. A.
, 1991, “
Viscoelastic Swirling Flow With Free Surface in Cylindrical Chambers
,”
Rheol. Acta
0035-4511,
30
, pp.
159
174
.
18.
Siginer
,
D. A.
, and
Knight
,
R.
, 1993, “
Swirling Free Surface Flow in Cylindrical Containers
,”
J. Eng. Math.
0022-0833,
27
, pp.
245
264
.
19.
Yu
,
B.
,
Wei
,
J.
, and
Kawaguchi
,
Y.
, 2006, “
Swirling Flow of a Viscoelastic Fluid With Free Surface—Part II: Numerical Analysis With Extended Marker-and-Cell Method
,”
ASME Trans. J. Fluids Eng.
0098-2202,
128
, pp.
77
87
.
20.
Munekata
,
M.
,
Shibata
,
E.
,
Matsuzaki
,
K.
, and
Ohba
,
H.
, 2002, “
Experimental Study of Swirling Flow With a Surfactant for Drag Reduction in a Pipe
,”
JSME Int. J., Ser. B
1340-8054,
45
, pp.
35
40
.
21.
Munekata
,
M.
,
Matsuzaki
,
K.
, and
Ohba
,
H.
, 2006, “
Vortex Motion in a Swirling Flow of Surfactant Solution With Drag Reduction
,”
ASME Trans. J. Fluids Eng.
0098-2202,
128
, pp.
101
106
.
22.
Bird
,
R. B.
,
Armstrong
,
R. C.
, and
Hassager
,
O.
, 1987,
Dynamics of Polymeric Liquids. Volume 1: Fluid Mechanics
, 2nd ed.,
Wiley Interscience
,
New York
, pp.
353
369
.
23.
Owen
,
J. M.
, and
Rogers
,
R. H.
, 1989,
Flow and Heat Transfer in Rotating-Disc Systems
,
Research Studies Press
, pp.
137
142
.
You do not currently have access to this content.