The study of air-water, two-phase flows in hydraulic structures such as pressurized flow tunnels, culverts, sewer pipes, junctions, and similar conduits is of great importance for design purposes. Air can be provided by vortices at water intakes, pumping stations, aerators, steep channels, etc. Under certain conditions, air may also be introduced into pressurized intake systems, which may form large bubbles in portions of the pipe. The bubbles may, in turn, cause an unstable slug flow, or other flow patterns, that leads to sever periodic transient pressure. In this paper, an experimental model (a circular and transparent pipeline, 90 mm in ID and 10 m in length) is used to predict pressure loss in a pipeline or tunnel involving resonance and shock waves introduced by a two-phase air-water slug flow. For this purpose, differential pressure transducers were used to measure pressure loss variations in time along the pipeline at different sections and for different air/water flow rates. The experimental results of pressure loss for different hydraulic and geometric properties indicate that Weber number (We), Froude number (Fr), and air concentration (C) are the most important parameters affecting pressure loss. Finally, relations for forecasting pressure loss in these situations are presented as a function of flow characteristics.

1.
Mandhane
,
J. M.
,
Gregory
,
G. A.
, and
Aziz
,
K.
, 1974, “
A Flow Pattern Map for Gas-Liquid Flow in Horizontal Pipes
,”
Int. J. Multiphase Flow
0301-9322,
1
, pp.
537
553
.
2.
Taitel
,
Y.
, and
Duklera
,
A. E.
, 1977, “
A Model for Slug Frequency During Gas-Liquid Flow in Horizontal and Near Horizontal Pipes
,”
Int. J. Multiphase Flow
0301-9322,
3
(
6
), pp.
585
596
.
3.
Bendiksen
,
K. H.
, 1984, “
An Experimental Investigation of the Motion of the Long Bubbles in Inclined Tubes
,”
Int. J. Multiphase Flow
0301-9322,
10
(
4
), pp.
467
483
.
4.
Woods
,
B. D.
, and
Hanratty
,
T. J.
, 1999, “
Influence of Froude Number on Physical Processes Determining Frequency of Slugging in Horizontal Gas–Liquid Flows
,”
Int. J. Multiphase Flow
0301-9322,
25
(
6–7
), pp.
1195
1223
.
5.
Cook
,
M.
, and
Behnia
,
M.
, 2000, “
Slug Length Prediction in Near Horizontal Gas–Liquid Intermittent Flow
,”
Chem. Eng. Sci.
0009-2509,
55
, pp.
2009
2018
.
6.
van Hout
,
R.
,
Barnea
,
D.
, and
Shemer
,
L.
, 2001, “
Evolution of Statistical Parameters of Gas–Liquid Slug Flow Along Vertical Pipes
,”
Int. J. Multiphase Flow
0301-9322,
27
(
9
), pp.
1579
1602
.
7.
Woods
,
B. D.
,
Fan
,
Zh.
, and
Hanratty
,
T. J.
, 2006, “
Frequency and Development of Slugs in a Horizontal Pipe at Large Liquid Flows
,”
Int. J. Multiphase Flow
0301-9322,
32
(
8
), pp.
902
925
.
8.
Wang
,
X.
,
Guo
,
L.
, and
Zhanga
,
X.
, 2007, “
An Experimental Study of the Statistical Parameters of Gas–Liquid Two-Phase Slug Flow in Horizontal Pipeline
,”
Int. J. Heat Mass Transfer
0017-9310,
50
(
11–12
), pp.
2439
2443
.
9.
Al-Safran
,
E.
, 2009, “
Investigation and Prediction of Slug Frequency in Gas/Liquid Horizontal Pipe Flow
,”
J. Pet. Sci. Eng.
0920-4105,
69
(
1–2
), pp.
143
155
.
10.
Lockhart
,
R. W.
, and
Martinelli
,
R. C.
, 1949, “
Proposed Correlation of Data for Isothermal Two-Phase Two-Component Flow in Pipes
,”
Chem. Eng. Prog.
0360-7275,
45
, pp.
64
193
.
11.
Awwad
,
A.
,
Xin
,
R. C.
,
Dong
,
Z. F.
,
Ebadian
,
M. A.
, and
Soliman
,
H. M.
, 1995, “
Measurement and Correlation of the Pressure Drop in Air–Water Two-Phase Flow in Horizontal Helicoidal Pipes
,”
Int. J. Multiphase Flow
0301-9322,
21
(
4
), pp.
607
619
.
12.
Kovacs
,
L.
, and
Varadi
,
S.
, 1999, “
Two-Phase Flow in a Vertical Pipeline of Air Lift
,”
Periodica Polytechnica Ser. Mech. Eng.
,
43
(
1
), pp.
3
18
.
13.
Ekberg
,
N. P.
,
Ghiaasiaan
,
S. M.
,
Abdel-Khalik
,
S. I.
,
Yoda
,
M.
, and
Jeter
,
S. M.
, 1999, “
Gas–Liquid Two-Phase Flow in Narrow Horizontal Annuli
,”
Nucl. Eng. Des.
0029-5493,
192
, pp.
59
80
.
14.
Friedel
,
L.
, 1979, “Improved Friction Pressure Drop Correlations for Horizontal and Vertical Two-Phase Pipe Flow,” Paper E2, European Two-Phase Flow Group Meeting, Ispra, Italy.
15.
Zhao
,
J. F.
,
Lin
,
H.
,
Xie
,
J. C.
, and
Hu
,
W. R.
, 2002, “
Pressure Drop of Bubbly Two-Phase Flow in a Square Channel at Reduced Gravity
,”
Adv. Space Res.
0273-1177,
29
(
4
), pp.
681
686
.
16.
Daas
,
H. M.
, and
Bleyle
,
D.
, 2005, “
Influence of Liquid Viscosity on the Pressure Loss and the Effectiveness of Drag-Reducing Agents in Horizontal Slug Flow
,”
ASME J. Energy Resour. Technol.
0195-0738,
127
(
2
), pp.
149
152
.
17.
Supa-Amornkul
,
S.
,
Steward
,
F. R.
, and
Lister
,
D. H.
, 2005, “
Modeling Two-Phase Flow in Pipe Bends
,”
ASME J. Pressure Vessel Technol.
0094-9930,
127
(
2
), pp.
204
209
.
18.
Azzi
,
A.
, and
Friedel
,
L.
, 2004, “
Two-Phase Upward Flow 90° Bend Pressure Loss Model
,”
Forsch. Ingenieurwes.
0015-7899,
69
(
2
), pp.
120
130
.
19.
Byong
,
J. Y.
,
Dong
,
J. E.
,
Kyung
,
H. K.
,
Chul
,
H. S.
, and
Won
,
P. B.
, 2005, “Measurement of the Single and Two-Phase Flow Using a Newly Developed Average Bidirectional Flow Tube,” Nucl. Engrg. Technol., 37(6), pp. 595–604.
20.
Domanski
,
P. A.
, and
Hermes
C. J. L.
, 2006, “
An Improved Two Phase Pressure Drop Correlation for 180° Return Bends
,”
Proceedings of the Third Asian Conference on Refrigeration and Air-Conditioning
, Gyeongju, Korea.
21.
Kabiri-Samani
,
A. R.
,
Borghei
,
S. M.
, and
Saidi
,
M. H.
, 2007, “
Fluctuation of Air-Water Two-Phase Flow in Horizontal and Inclined Water Pipelines
,”
ASME J. Fluids Eng.
0098-2202,
129
(
1
), pp.
1
14
.
22.
Padilla
,
M.
,
Revellina
,
R.
, and
Bonjoura
,
J.
, 2009, “
Prediction and Simulation of Two-Phase Pressure Drop in Return Bends
,”
Int. J. Refrig.
0140-7007,
32
, pp.
1776
1783
.
23.
Straub
,
L. G.
, and
Anderson
,
A. G.
, 1958, “
Experiments of Self-Aerated Flows in Open Channels
,”
J. Hydr. Div.
0044-796X,
84
(
7
), pp.
1
35
.
24.
Falvey
,
H. T.
, 1980, “
Air Water Flow in Hydraulic Structures
,” USBR, Eng. Monograph 41, U.S. Department of Interior, Washington, DC.
25.
Zukowsky
,
N. E.
, 1989, “
About the Water Hammer in Water-Supply Pipelines
,”
Proceedings of the Fourth Russian Water-Supply Congress
, Moscow, Russia.
26.
Barenblatt
,
G. I.
, 1996,
Similarity, Self-Similarity and Intermediate Asymptotics
,
Cambridge University Press
,
Cambridge, UK
.
27.
Novak
,
P.
,
Moffat
,
A. I. B.
,
Nalluri
,
C.
, and
Narayanan
,
R.
, 2001,
Hydraulic Structures
, 3rd ed.,
Spon
,
London
.
28.
Gonzalez
,
J.
,
Rojas
,
I.
,
Pomares
,
H.
, and
Ortega
,
J.
, 2002, “
A New Clustering Technique for Function Aproximation
,”
IEEE Trans. Neural Netw.
1045-9227,
13
(
1
), pp.
132
142
.
29.
Mongiardini
,
V.
, 1966, Moto Dei Miscugli di Area e Acqua in Correnti in Pressione, L’ Acqua No. 2.
30.
Piva
,
A. M.
, 1968, Moto Bifase in Tubazioni Orizzontali, IX Convegno di Idraulica, Genova.
31.
Kalinske
,
A. A.
, and
Bliss
,
P. H.
, 1943, “
Removal of Air from Pipelines by Flowing Water
,”
Civ. Eng. (N.Y.)
0009-7853,
13
(
10
), pp.
480
482
.
You do not currently have access to this content.