The squeezing flow of an incompressible micropolar fluid between two parallel infinite disks is investigated in the presence of a magnetic flied. An analysis of strong and weak interactions has been carried out. Similarity solutions are derived by homotopy analysis method. The variation of dimensionless velocities are sketched in order to see the influence of pertinent parameters. Skin friction coefficient and wall couple stress coefficient have been tabulated. In addition, the derived results are compared with the homotopy perturbation solution in a viscous fluid.
References
1.
Rajagopal
, K. R.
, 1982, “Boundedness and Uniqueness of Fluids of Differential Type
,” Acta Sin. Indica
, 18
, pp. 1
–11
.2.
Rajagopal
, K. R.
, 1995, “On the Boundary Conditions for Fluids of the Differential Type
,” Navier-Stokes Equation and Related Nonlinear Problems
, A.
Sequira
, ed., Plenum Press
, New York
, pp. 273
–278
.3.
Rajagopal
, K. R.
, Szeri
, A. Z.
, and Troy
, W.
, 1986, “An Existence Theorem for the Flow of Non-Newtonian Fluid Past an Infinite Porous Plate
,” Int. J. Non-Linear Mech.
, 21
(4
), pp. 279
–289
.4.
Fetecau
, C.
, and Fetecau
, C.
, 2006, “Starting Solutions of the Motion of a Second Grade Fluid due to Longitudinal and Torsional Oscillations of a Circular Cylinder
,” Int. J. Eng. Sci.
, 44
(11–12
), pp. 788
–796
.5.
Fetecau
, C.
, Fetecau
, C.
, and Vieru
, D.
, 2007, “On Some Helical Flows of Oldroyd-B Fluids
,” Acta Mech.
, 189
(1–2
), pp. 53
–63
.6.
Fetecau
, C.
, Vieru
, D.
, and Fetecau
, C.
, 2008, “A Note on the Second Problem of Stokes for Newtonian Fluid
,” Int. J. Non-Linear Mech.
, 43
(5
), pp. 451
–457
.7.
Zhang
, Z. Y.
, Fu
, C. J.
, and Tan
, W. C.
, 2008, “Linear and Non-Linear Stability Analysis of Thermal Convection for Oldroyd-B Fluids in Porous Media Heated From Below
,” Phys. Fluids
, 20
(8
), p. 084103
.8.
Xue
, C. F.
, Nie
, J. X.
, and Tan
, W. C.
, 2008, “An Exact Solution of Start Up Flow for Fractional Generalized Burgers Fluid in a Porous Half Space
,” Nonlinear Anal. Theory, Methods Appl.
, 69
(7
), pp. 2086
–2094
.9.
Wang
, S. W.
, and Tan
, W. C.
, 2008, “Stability Analysis of Double-Diffusive Convection of Maxwell Fluid in a Porous Medium Heated From Below
,” Phys. Lett. A
, 372
(17
), pp. 3046
–3050
.10.
Chen
, C. I.
, Chen
, C. K.
, and Yang
, Y. T.
, 2004, “Unsteady Unidirectional Flow of an Oldroyd-B Fluid in a Circular Duct With Different Given Volume Flow Rate Conditions
,” Heat Mass Transfer
, 40
(3–4
), pp. 203
–209
.11.
Hayat
, T.
, Abbas
, Z.
, and Ali
, N.
, 2008, “MHD Flow and Mass Transfer of a Upper-Convected Maxewell Fluid Past a Porous Shrinking Sheet With Chemical Reaction Species
,” Phys. Lett. A
, 372
(26
), pp. 4698
–4704
.12.
Ayub
, M.
, Rasheed
, A.
, and Hayat
, T.
, 2003, “Exact Flow of a Third Grade Fluid Past a Porous Plate Using Homotopy Analysis Method
,” Int. J. Eng. Sci.
, 41
(18
), pp. 2091
-2103
.13.
Hayat
, T.
, Ellahi
, R.
, and Asghar
, S.
, 2008, “Hall Effects on Unsteady Flow due to Non-Coaxially Rotating Disk and a Fluid at Infinity
,” Chem. Commun.
, 193
(10
), pp. 1
–19
.14.
Hayat
, T.
, Abbas
, Z.
, and Javed
, T.
, 2008, “Mixed Convection Flow of a Micropolar Fluid over Non-Linearly Stretching Sheet
,” Phys. Lett. A
, 372
(5
), pp. 637
–647
.15.
Sajid
, M.
, Hayat
, T.
, Asghar
, S.
, and Vajravelu
, K.
, 2008, “Analytic Solution for Axisymmetric Flow Over a Nonlinearly Stretching Sheet
,” Arch. Appl. Mech.
, 78
(2
), pp. 127
–134
.16.
Eringen
, A. C.
, 1966, “Theory of Micropolar Fluids
,” J. Math.
, 16
, pp. 1
–18
.17.
Ariman
, T.
, Turk
, M. A.
, and Sylvester
, N. D.
, 1974, “Applications of Micro-Continum Fluid Mechanics
,” Int. J. Eng. Sci.
, 12
, pp. 273
–293
.18.
Ezzat
, M. A.
, Othman
, M. I.
and Helmy
, K. A.
, 1999, “A Problem of Micropolar Magnetohydrodynamic Boundary Layer Flow,”
Can. J. Phys.
77
(10
), pp. 813
–827
.19.
Helmy
, K. A.
, Idriss
, H. F.
, and Kassem
, S. E.
, 2002, “MHD Free Convection Flow of a Micropolar Fluid Past a Vertical Porous Plate
,” Can. J. Phys.
, 80
(12
), pp. 166
–1673
.20.
Rees
, D. A. S.
, and Pop
, I.
, 1998, “Free Convection Boundary Layer Flow of a Micropolar Fluid From a Vertical Flat Plate
,” IMA. J. Appl. Math.
, 61
(2
), pp. 179
–197
.21.
Jena
, S. K.
, and Mathur
, M. N.
, 1981, “Similarity Solution for Laminar Free Convection Flow of Thermo-Micropolar Fluid Past a Nonisothermal Flat Plate
,” Int. J. Eng.
, 19
(11
), pp. 1431
–1439
.22.
Guram
, G. S.
, and Smith
, A. C.
, 1980, “Stagnation Flows of Micropolar Fluids With Strong and Weak Interactions
,” Comput. Math. Appl.
, 6
(2
), pp. 213
–233
.23.
Ahmadi
, G.
, 1976, “Self Similar Solution of Incompressible Micropolar Boundary Layer Flow Over Semi-Infinite Flat Plate
,” Int. J. Eng. Sci.
, 14
(7
), pp. 639
–646
.24.
Nazar
, R.
, Amin
, N.
, Filip
, D.
, and Pop
, I.
, 2004, “Stagnation Point Flow of Micropolar Fluid Towards a Stretching Sheet
,” Int. J. Non-Linear Mech.
, 39
(7
), pp. 1227
–1235
.25.
Takhar
, H. S.
, Bhargava
, R.
, Agrawal
, R. S.
, and Balaji
, A.V. S.
, 2000, “Finite Element Solution of a Micropolar Fluid Flow and Heat Transfer Between Two Porous Discs
,” Int. J. Eng. Sci.
, 38
(17
), pp. 1907
–1922
.26.
Ishizawa
, S.
, 1966, “The Unsteady Flow Between Two Parallel Discs With Arbitrary Varying Gap Width
,” Bull. Jpn. Soc. Mech. Eng.
, 9
, pp. 533
–550
.27.
Grimm
, R. J.
, 1976, “Squeezing Flows of Newtonian Liquid Films an Analysis Include the Fluid Inertia
,” App. Sci. Res.
, 32
(2
), pp. 149
–166
.28.
Wang
, C. Y.
, and Watson
, L. T.
, 1979, “Squeezing of a Viscous Fluid Between Elliptic Plates
,” App. Sci. Res.
, 35
(2–3
), 195
–207
.29.
Usha
, R.
, and Sridharan
, R.
, 1999, “Arbitrary Squeezing of a Viscous Fluid Between Elliptic Plates
,” Fluid Dyn. Res.
, 18
(1
), pp. 35
–51
.30.
Laun
, H. M.
, Rady
, M.
, and Hassager
, O.
, 1999, “Analytical Solutions for Squeeze Flow With Partial Wall Slip
,” J. Non-Newtonian Fluid Mech.
, 81
(1–2
), pp. 1
–15
.31.
Debaut
, B.
, 2001, “Non-Isothermal and Viscoelastic Effects in the Squeeze Flow Between Infinite Plates,”
, J. Non-Newtonian Fluid Mech.
, 98
(1
), pp. 15
–31
.32.
Rashidi
, M. M.
, Shahmohamadi
, H.
, and Dinarvand
, S.
, 2008, “Analytic Approximate Solutions for Unsteady Two-Dimensional and Axisymmetric Squeezing Flows between Parallel Plates
,” Math. Probl. Eng.
, 2008
(2
), p. 935095
.33.
Domairy
, G.
, and Aziz
, A.
, 2009, “Approximate Analysis of MHD Squeezing Flow Between Two Parallel Disks With Suction or Injection by Homotopy Perturbation Method
,” Math. Probl. Eng.
, 2009
, p. 603916
.34.
Liao
, S. J.
, 2003, Beyond Perturbation: Introduction to Homotopy Analysis Method
, Chapman and Hall, CRC Press
, Boca Raton
.35.
Xu
, H.
, and Liao
, S. J.
, 2005, “Dual Solutions of Boundary Layer Flow Over Upstream Moving Plate
,” Commun. Nonlinear Sci. Numer. Simul.
, 13
(2
), pp. 350
–358
.36.
Liao
, S. J.
, 2005, “A New Branch of Solutions of Unsteady Boundary Layer Flows Over an Impermeable Stretched Plate
,” Int. J. Heat Mass Transfer
, 48
(12
), pp. 2529
–2539
.37.
Chen
, J.
, and Liao
, S. J.
, 2008, “Series Solutions of Nano-Boundary Layer Flows by Means of the Homotopy Analysis Method
,” J. Math. Anal. Appl.
, 343
(1
), pp. 233
–245
.38.
Abbasbandy
, S.
, and Parkes
, E. J.
, 2008, “Solitary Smooth Hump Solutions of the Camassa-Holm Equation by Means of Homotopy Analysis Method
,” Chaos, Solitons Fractals
, 36
(3
), pp. 581
–591
.39.
Abbasbandy
, S.
, 2008, “Approximate Solution of the Nonlinear Model of Diffusion and Reaction Catalysts by Means of the Homotopy Analysis Method
,” Chem. Eng. J.
, 136
(2–3
), pp. 144
–150
.40.
Abbasbandy
, S.
, and Zakaria
, F. S.
, 2008, “Soliton Solution for the Fifth-Order Kdv Equation With the Homotopy Analysis Method
,” Nonlinear Dyn.
, 51
(1–2
), pp. 83
–87
.41.
Hayat
, T.
, Mustafa
, M.
, and Pop
, I.
, 2010, “Heat and Mass Transfer for Soret and Dufour’s Effect on Mixed Convection Boundary Layer Flow Over a Stretching Vertical Surface in a Porous Medium Filled With a Viscoelastic Fluid
,” Commun. Nonlinear Sci. Numer. Simul.
, 15
(5
), pp. 1183
–1196
.42.
Liao
, S. J.
, 2010, “An Optimal Homotopy Analysis Approach for Strongly Nonlinear Differential Equations
,” Commun. Nonlinear Sci. Numer. Simul.
, 15
(8
), pp. 2003
–2016
.Copyright © 2011
by American Society of Mechanical Engineers
You do not currently have access to this content.