In this study, we used the Taguchi method to derive the optimal design parameters for the grooves formed on the upper surface of a circular cylinder. Using the derived values of the optimal design parameters, we created grooves on diphycercal the surfaces of a circular cylinder and analyzed the wake flow and the boundary-layer flow of the circular cylinder. The streamwise time mean velocity and turbulence intensity of the wake flow field were used as the characteristics. Based on these characteristics, the optimal design parameter values were selected: n = 3, k = 1.0 mm (k/d = 2.5%), and θ = 60 deg. When the grooved cylinder was used, the streamwise time mean velocity in the wake of the cylinder showed 12.3% recovery, the wake width was reduced by 18.4% compared to the results from the smooth cylinder and we had 28.2% drag reduction from that of smooth cylinder. Also, the flow on the smooth cylinder separated at around 82 deg but the flow separation on a grooved cylinder appeared beyond 90 deg, that reducing the drag.

References

1.
Richard
,
M. W.
,
2004
, “
Impact of Advanced Aerodynamic Technology on Transportation Energy Consumption
,” SAE Paper No. 2004-01-1306.
2.
Bearman
,
P. W.
, and
Trueman
,
D. M.
,
1972
, “
An Investigation of the Flow Around Rectangular Cylinders
,”
Aeronaut. Q
,
23
, pp.
229
237
.
3.
Gad-el-Hak
,
M.
,
1989
, “
Flow Control
,”
Appl. Mech. Rev.
,
42
, pp.
261
293
.10.1115/1.3152376
4.
Lim
,
H. C.
, and
Lee
,
S. J.
,
2002
, “
Flow Control of Circular Cylinders With Longitudinal Grooved Surfaces
,”
AIAA J.
,
40
(
10
), pp.
2027
2036
.10.2514/2.1535
5.
Igarashi
,
T.
,
1986
, “
Effect of Tripping Wires on the Flow Around a Circular Cylinder Normal to Airstream
,”
Bull. JSME
,
29
(
255
), pp.
2917
2924
.10.1299/jsme1958.29.2917
6.
Price
,
P.
,
1956
, “
Suppression of the Fluid-Induced Vibration of Circular Cylinders
,”
J. Engrg. Mech. Div.
, pp.
1030-1
1030-21
.
7.
Bearman
,
P. W.
, and
Harvey
,
J. K.
,
1993
, “
Control of Circular Cylinder Flow by the Use of Dimples
,”
AIAA J.
,
31
(
10
), pp.
1753
1756
.10.2514/3.11844
8.
Abboud
,
J. E.
,
Karaki
,
W. S.
, and
Oweis
,
G. F.
,
2011
, “
Particle Image Velocimetry Measurements in the Wake of a Cactus-Shaped Cylinder
,”
ASME J. Fluids Eng.
,
133
(
9
), p.
094502
.10.1115/1.4004824
9.
Takeyoshi
,
K.
, and
Michihisa
,
T.
,
1991
, “
Fluid Dynamic Effects of Grooves on Circular Cylinder Surface
,”
AIAA J.
,
29
, pp.
2062
2068
.10.2514/3.10842
10.
Shinichi
,
T.
,
Takuya
,
S.
, and
Katsumi
,
A.
,
2004
, “
Drag Reduction Mechanism of a Circular Cylinder by Arc Grooves
,”
Trans. JSME B
,
70
(
697
), pp.
2363
2370
.10.1299/kikaib.70.2363
11.
Robarge
,
T. W.
, and
Stark
,
A. M.
,
2004
, “
Design Considerations for Using Indented Surface Treatments to Control Boundary Layer Separation
,”
42nd AIAA Aerospace Sciences Meeting and Exhibit
, Paper No. AIAA 2004-425.
12.
Taguchi
,
K.
, and
Konish
,
S.
,
1992
,
Taguchi Methods
,
ASI Press
,
Dearborn, MI
.
13.
Ha
,
J.
,
Kim
,
T. Y.
, and
Lee
,
D. H.
,
2003
, “
Design of Experiments for the Flow Field Around Cylinder
,” Paper No. KSAS03-2238.
14.
Wu
,
S.
,
Ouyang
,
K.
, and
Shiah
,
S.
,
2008
, “
Robust Design of Microbubble Drag Reduction in a Channel Flow Using the Taguchi Method
,”
Ocean Eng.
,
35
(
8–9
), pp.
856
863
.10.1016/j.oceaneng.2008.01.022
15.
Landahl
,
M.
, “
Drag on a Ground Vehicle in Separated Turbulent Flow
,” Massachusetts Institute of Technology (unpublished).
16.
Greiner
,
C. M.
,
1990
, “
Unsteady Hot-Wire and Hot-Film Wake Measurements of Automobile-Like Bluff Bodies
,” Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA.
17.
Schlichting
,
H.
,
1979
,
Boundary Layer Theory
, 7th ed.,
McGraw-Hill
,
New York
.
18.
Lee
,
B. Y.
, and
Lee
,
H. W.
,
2007
, “
Shape Optimal Design of an Automotive Pedal Arm Using the Taguchi Method
,”
J. KSPE
,
24
(
3
), pp.
76
83
.
19.
Talley
,
S.
, and
Mungal
,
G.
,
2002
, “
Flow Around Cactus-Shaped Cylinders
,” Center for Turbulence Research, Annual Research Briefs 2002, pp.
363
376
.
20.
Yamagishi
,
Y.
, and
Oki
,
M.
,
2005
, “
Effect of Grooves Shape on Drag Coefficient of a Circular Cylinder With Grooves
,”
J. Jpn. Soc. Des. Eng.
,
40
(
10
), pp.
527
533
.
21.
Choi
,
J.
,
Jeon
,
W. P.
, and
Choi
,
H. C.
,
2006
, “
Mechanism of Drag Reduction by Dimple on a Sphere
,”
Phys. Fluid
,
18
, p.
041702
.10.1063/1.2191848
You do not currently have access to this content.