A numerical investigation is performed into the flow characteristics of the electroosmotic flow induced within a microchannel with a complex-wavy surface by a time-varying periodic electric field. The simulations focus specifically on the effects of the Strouhal number of the periodic electric potential, the amplitude of the periodic electric potential, the amplitude of the complex-wavy surface, and the waveform geometry. The results show that under steady-time periodic conditions, the flow pattern induced within the microchannel varies over the course of the oscillation period. In particular, it is shown that a flow recirculation structure is generated in the trough region of the wavy surface as the applied electric field falls to zero if the amplitude of the wavy surface exceeds a certain threshold value. In addition, it is shown that the phases of the electric field and electroosmotic velocity near the wall surface are almost identical. However, a phase shift exists between the electric field and the bulk flow velocity in the central region of the channel; particularly at larger values of the Strouhal number. Finally, it is shown that the velocity profile near the wavy surface is more sensitive to changes in the waveform geometry than that in the center of the channel. Overall, the simulation results presented in the study provide a useful source of reference for the development of new microfluidic systems incorporating microchannels with complex-wavy surfaces.

References

1.
Bayraktar
,
T.
, and
Pidugu
,
S. B.
,
2006
, “
Characterization of Liquid Flows in Microfluidic Systems
,”
Int. J. Heat Mass Trans.
,
49
, pp.
815
824
.10.1016/j.ijheatmasstransfer.2005.11.007
2.
Mala
,
G. M.
,
Li
,
D.
,
Werner
,
C.
,
Jacobasch
,
H. J.
, and
Ning
,
Y. B.
,
1997
, “
Flow Characteristics of Water Through a Microchannel Between Two Parallel Plates With Electrokinetic Effects
,”
Int. J. Heat Fluid Flow
,
18
, pp.
489
496
.10.1016/S0142-727X(97)00032-5
3.
Yang
,
C.
, and
Li
,
D.
,
1997
, “
Electrokinetic Effects on Pressure-Driven Liquid Flows in Rectangular Microchannels
,”
J. Colloid Interface Sci.
,
194
, pp.
95
107
.10.1006/jcis.1997.5091
4.
Patankar
,
N. A.
, and
Hu
,
H. H.
,
1998
, “
Numerical Simulation of Electroosmotic Flow
,”
Anal. Chem.
,
70
, pp.
1870
1881
.10.1021/ac970846u
5.
Arulanandam
,
S.
, and
Li
,
D.
,
2000
, “
Liquid Transport in Rectangular Microchannels by Electroosmotic Pumping
,”
Colloid. Surf. A
,
161
, pp.
89
102
.10.1016/S0927-7757(99)00328-3
6.
Wu
,
Z. Q.
,
Cao
,
X. D.
,
Chen
,
L.
,
Zhang
,
J. R.
,
Xia
,
X. H.
,
Fang
,
Q.
, and
Chen
,
H. Y.
,
2010
, “
Study on the Influence of Cross-Sectional Area and Zeta Potential on Separation for Hybrid-Chip-Based Capillary Electrophoresis Using 3D Simulations
,”
Electrophoresis
,
31
, pp.
3665
3674
.10.1002/elps.201000258
7.
Erickson
,
D.
, and
Li
,
D.
,
2002
, “
Influence of Surface Heterogeneity on Electrokinetically Driven Microfluidic Mixing
,”
Langmuir
,
18
, pp.
1883
1892
.10.1021/la015646z
8.
Hu
,
Y.
,
Werner
,
C.
, and
Li
,
D.
,
2003
, “
Electrokinetic Transport Through Rough Microchannels
,”
Anal. Chem.
,
75
, pp.
5747
5758
.10.1021/ac0347157
9.
Hu
,
Y.
,
Xuan
,
X.
,
Werner
,
C.
, and
Li
,
D.
,
2007
, “
Electroosmotic Flow in Microchannels With Prismatic Elements
,”
J. Micromech. Microeng.
,
3
, pp.
151
160
.10.1007/s10404-006-0115-6
10.
Yang
,
D.
, and
Liu
,
Y.
,
2008
, “
Numerical Simulation of Electroosmotic Flow in Microchannels With Sinusoidal Roughness
,”
Colloid. Surf. A
,
328
, pp.
28
33
.10.1016/j.colsurfa.2008.06.029
11.
Bhattacharyya
,
S.
, and
Nayak
,
A. K.
,
2010
, “
Combined Effect of Surface Roughness and Heterogeneity of Wall Potential on Electroosmosis in Microfluidic/Nanofluidic Channels
,”
ASME J. Fluids Eng.
,
132
(4), p.
041103
.10.1115/1.4001308
12.
Chen
,
C. K.
, and
Cho
,
C. C.
,
2007
, “
Electrokinetically-Driven Flow Mixing in Microchannels With Wavy Surface
,”
J. Colloid Interface Sci.
,
312
, pp.
470
480
.10.1016/j.jcis.2007.03.033
13.
Wang
,
D.
,
Summers
,
J. L.
, and
Gaskell
,
P. H.
,
2008
, “
Modeling of Electrokineticallt Driven Mixing Flow in Microchannels With Patterned Blocks
,”
Comput. Math. Appl.
,
55
, pp.
1601
1610
.10.1016/j.camwa.2007.08.021
14.
Tang
,
G. H.
,
He
,
Y. L.
, and
Tao
,
W. Q.
,
2010
, “
Numerical Analysis of Mixing Enhancement for Micro-Electroosmotic Flow
,”
J. Appl. Phys.
,
107
, p.
104906
.10.1063/1.3391617
15.
Söderman
,
O.
, and
Jönsson
,
B.
,
1996
, “
Electro-Osmosis: Velocity Profiles in Different Geometries With Both Temporal and Spatial Resolution
,”
J. Chem. Phys.
,
105
, pp.
10300
10311
.10.1063/1.472958
16.
Dutta
,
P.
, and
Beskok
,
A.
,
2001
, “
Analytical Solution of Time Periodic Electroosmotic Flows: Analogies to Stokes’ Second Problem
,”
Anal. Chem.
,
73
, pp.
5097
5102
.10.1021/ac015546y
17.
Erickson
,
D.
, and
Li
,
D.
,
2003
, “
Analysis of Alternating Current Electroosmotic Flows in a Rectangular Microchannel
,”
Langmuir
,
19
, pp.
5421
5430
.10.1021/la027035s
18.
Marcos
,
Yang
,
C.
,
Wong
,
T. N.
, and
Ooi
,
K. T.
,
2004
, “
Dynamic Aspects of Electroosmotic Flow in Rectangular Microchannels
,”
Int. J. Eng. Sci.
,
42
, pp.
1459
1481
.10.1016/j.ijengsci.2003.07.012
19.
Wang
,
X.
,
Chen
,
B.
, and
Wu
,
J.
,
2007
, “
A Semianalytical Solution of Periodical Electro-Osmosis in a Rectangular Microchannel
,”
Phys. Fluids
,
19
, p.
127101
.10.1063/1.2784532
20.
Brown
,
A. B. D.
,
Smith
,
C. G.
, and
Rennie
,
A. R.
,
2000
, “
Pumping of Water With AC Electric Fields Applied to Asymmetric Pairs of Microelectrodes
,”
Phys. Rev. E
,
63
, p.
016305
.10.1103/PhysRevE.63.016305
21.
Ramos
,
A.
,
Gonzalez
,
A.
,
Castellanos
,
A.
,
Green
,
N. G.
, and
Morgan
,
H.
,
2003
, “
Pumping of Liquids With AC Voltages Applied to Asymmetric Pairs of Microelectrodes
,”
Phys. Rev. E
,
67
, p.
056302
.10.1103/PhysRevE.67.056302
22.
Bazant
,
M. Z.
, and
Ben
,
Y.
,
2006
, “
Theoretical Prediction of Fast 3D AC Electro-Osmotic Pumps
,”
Lab Chip
,
6
, pp.
1455
1461
.10.1039/b608092h
23.
Oddy
,
M. H.
,
Santiago
,
J. G.
, and
Mikkelsen
,
J. C.
,
2001
, “
Electrokinetic Instability Micromixing
,”
Anal. Chem.
,
73
, pp.
5822
5832
.10.1021/ac0155411
24.
Wang
,
Y.
,
Zhe
,
J.
,
Dutta
,
P.
, and
Chung
,
B. T.
,
2007
, “
A Microfluidic Mixer Utilizing Electrokinetic Relay Switching and Asymmetric Flow Geometries
,”
ASME J. Fluids Eng.
,
129
(4), pp.
395
403
.10.1115/1.2436578
25.
Pacheco
,
J. R.
,
Chen
,
K. P.
,
Pacheco-Vega
,
A.
,
Chen
,
B.
, and
Hayes
,
M. A.
,
2008
, “
Chaotic Mixing Enhancement in Electro-Osmotic Flows by Random Period Modulation
,”
Phys. Lett. A
,
372
, pp.
1001
1008
.10.1016/j.physleta.2007.08.051
26.
Chen
,
C. L.
,
Yau
,
H. T.
,
Cho
,
C. C.
, and
Chen
,
C. K.
,
2009
, “
Enhancement of Microfluidic Mixing Using Harmonic and Chaotic Electric Fields
,”
Int. J. Nonlinear Sci. Numer. Simul.
,
10
, pp.
1545
1554
.
27.
Kim
,
H. J.
, and
Beskok
,
A.
,
2009
, “
Numerical Modeling of Chaotic Mixing in Electroosmotically Stirred Continuous Flow Mixers
,”
ASME J. Heat Transfer
,
131
(9), p.
092403
.10.1115/1.3139109
28.
Cho
,
C. C.
,
Ho
,
C. J.
, and
Chen
,
C. K.
,
2010
, “
Enhanced Micromixing of Electroosmotic Flows Using Aperiodic Time-Varying Zeta Potentials
,”
Chem. Eng. J.
,
163
, pp.
180
187
.10.1016/j.cej.2010.08.003
29.
Hunter
,
R. J.
,
1981
,
Zeta Potential in Colloid Science: Principles and Applications
, Academic Press, New York.
30.
Probstein
,
R. F.
,
1994
,
Physicochemical Hydrodynamics: An Introduction
, Wiley, New York.
31.
Thomas
,
P. D.
, and
Middlecoff
,
J. F.
,
1980
, “
Direct Control of the Grid Point Distribution in Meshes Generated by Elliptic Equations
,”
AIAA J.
,
18
, pp.
652
656
.10.2514/3.50801
32.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow
, McGraw-Hill, New York.
33.
Xia
,
Z.
,
Mei
,
R.
,
Sheplak
,
M.
, and
Fan
,
Z. H.
,
2009
, “
Electroosmotically Driven Creeping Flows in a Wavy Microchannel
,”
Microfluid. Nanofluid.
,
6
, pp.
37
52
.10.1007/s10404-008-0290-8
You do not currently have access to this content.