This paper reports the design and investigation of a digital micro magnetofluidic platform for lab-on-a-chip applications. The platform allows a ferrofluid droplet to be driven along a preprogrammed path. The platform consists of a programmable x-y-positioning stage, a permanent magnet and a glass plate coated with a thin layer of Teflon. First, the actuation of a stand-alone water-based ferrofluid droplet was investigated. Circular, rectangular, triangular and number-eight-shape trajectories were tested and analyzed. The speed of the droplet is evaluated from the position data of the black ferrofluid using a customized MATLAB program. The results show that better positioning accuracy and steady movement can be achieved with smooth trajectories. Next, the ferrofluid droplet as the driving engine for a cargo of other diamagnetic liquid droplets is demonstrated. The characteristics of different cargo volumes are investigated. Due to the liquid/liquid cohesion, a large cargo of five times the volume of a 3-μL ferrofluid droplet can be transported. If the cargo is larger than the driving ferrofluid droplet, the liquid system forms a long trail that faithfully follows the preprogrammed path. Various mixing experiments were carried out. The effectiveness of mixing in this system is demonstrated with a titration test as well as a chemiluminescence assay. The platform shows a robust, simple and flexible concept for implementing a complex analysis protocol with multiple reaction steps.

References

1.
Fair
,
R. B.
,
2007
, “
Digital Microfluidics: Is a True Lab-on-a-Chip Possible?,
Microfluid. Nanofluid.
,
3
(
3
), pp.
245
281
.10.1007/s10404-007-0161-8
2.
Truong
,
T. Q.
, and
Nguyen
,
N. T.
,
2004
, “
A Polymeric Piezoelectric Micropump Based on Lamination Technology
,”
J. Micromech. Microeng.
,
14
(
4
), pp.
632
638
.10.1088/0960-1317/14/4/026
3.
Song
,
H.
,
Chen
,
D. L.
, and
Ismagilov
,
R. F.
,
2006
, “
Reactions in Droplets in Microfluidic Channels
,”
Angew. Chem., Int. Ed.
,
45
(
44
), pp.
7336
7356
.10.1002/anie.200601554
4.
Jebrail
,
M. J.
, and
Wheeler
,
A. R.
,
2010
, “
Let's Get Digital: Digitizing Chemical Biology With Microfluidics
,”
Curr. Opin. Chem. Biol.
,
14
(
5
), pp.
574
581
.10.1016/j.cbpa.2010.06.187
5.
Pollack
,
M. G.
,
Pamula
,
V. K.
,
Srinivasan
,
V.
, and
Eckhardt
,
A. E.
,
2011
, “
Applications of Electrowetting Based Digital Microfluidics in Clinical Diagnostics
,”
Expert Review of Molecular Diagnostics
,
11
(
4
), pp.
393
407
.10.1586/erm.11.22
6.
Nguyen
,
N.
, and
Huang
,
X.
,
2005
, “
Thermocapillary Effect of a Liquid Plug in Transient Temperature Fields
,”
Jpn. J. Appl. Phys.
,
44
(
2
), pp.
1139
1142
.10.1143/JJAP.44.1139
7.
Jiao
,
Z.
,
Huang
,
X.
,
Nguyen
,
N. T.
, and
Abgrall
,
P.
,
2008
, “
Thermocapillary Actuation of Droplet in a Planar Microchannel
,”
Microfluid. Nanofluid.
,
5
(
2
), pp.
205
214
.10.1007/s10404-007-0235-7
8.
Nguyen
,
N. T.
,
2012
, “
Micro-Magnetofluidics: Interactions Between Magnetism and Fluid Flow on the Microscale
,”
Microfluid. Nanofluid.
,
12
(
1–4
), pp.
1
16
.10.1007/s10404-011-0903-5
9.
Egatz-Gómez
,
A.
,
Melle
,
S.
,
García
,
A. A.
,
Lindsay
,
S. A.
,
Márquez
,
M.
,
Domínguez-García
,
P.
,
Rubio
,
M. A.
,
Picraux
,
S. T.
,
Taraci
,
J. L.
,
Clement
,
T.
,
Yang
,
D.
,
Hayes
,
M. A.
, and
Gust
,
D.
,
2006
, “
Discrete Magnetic Microfluidics
,”
Appl. Phys. Lett.
,
89
(
3
), p. 034106. 10.1063/1.2227517
10.
Pipper
,
J.
,
Inoue
,
M.
,
Ng
,
L. F.
,
Neuzil
,
P.
,
Zhang
,
Y.
, and
Novak
,
L.
,
2007
, “
Catching Bird Flu in a Droplet
,”
Nat. Med.
,
13
(
10
), pp.
1259
1263
.10.1038/nm1634
11.
Long
,
Z.
,
Shetty
,
A. M.
,
Solomon
,
M. J.
, and
Larson
,
R. G.
,
2009
, “
Fundamentals of Magnet-Actuated Droplet Manipulation on an Open Hydrophobic Surface
,”
Lab. Chip
,
9
(
11
), pp.
1567
1575
.10.1039/b819818g
12.
Nguyen
,
N. T.
,
Beyzavi
,
A.
,
Ng
,
K. M.
, and
Huang
,
X.
,
2007
, “
Kinematics and Deformation of Ferrofluid Droplets Under Magnetic Actuation
,”
Microfluid. Nanofluid.
,
3
(
5
), pp.
571
579
.10.1007/s10404-007-0150-y
13.
Beyzavi
,
A.
, and
Nguyen
,
N. T.
,
2009
, “
One-Dimensional Actuation of a Ferrofluid Droplet by Planar Microcoils
,”
J. Phys. D
,
42
(
1
), p.
015004
.10.1088/0022-3727/42/1/015004
14.
Beyzavi
,
A.
, and
Nguyen
,
N. T.
,
2010
, “
Programmable Two-Dimensional Actuation of Ferrofluid Droplet Using Planar Microcoils
,”
Micromech. Microeng.
,
20
(
1
), p.
015018
.10.1088/0960-1317/20/1/015018
15.
Nguyen
,
N. T.
,
Zhu
,
G.
,
Chua
,
Y.
,
Phan
,
V.
, and
Tan
,
S.
,
2010
, “
Magnetowetting and Sliding Motion of a Sessile Ferrofluid Droplet in the Presence of a Permanent Magnet
,”
Langmuir
,
26
(
15
), pp.
12553
12559
.10.1021/la101474e
16.
Berthier
,
J.
,
2008
,
Microdrops and Digital Microfluidics
,
William Andrew Pub., Norwich
,
NY
.
You do not currently have access to this content.