A new simplified approach for modeling and simulating pressure transients resulting from the rapid acceleration or deceleration of turbulent flow in smooth-walled fluid lines is introduced. In contrast to previous approaches for modeling turbulence by modifying the head loss terms in the momentum partial differential equation, this approach is achieved by coupling the frequency domain analytical solution to the laminar flow version of the partial differential equations in series with a lumped resistance that has been sized so that the steady flow resistance for the line is equivalent to an empirical turbulent steady flow resistance. The model provides normalized pressure and flow transients that have good agreement with experimental data and with method-of-characteristics (MOC) solutions associated with previously validated turbulence models. The motivation for this research is based on the need for a practical means to simulate the effects of fluid transients in lines that are internal components within a total engineering system without the need to understand the different unsteady turbulence one- and two-dimensional (1D/2D) friction models and also be proficient with the complexities of nonlinear interaction of friction and interpolation errors encountered using MOC. This modeling approach utilizes a preprogramed inverse frequency algorithm, commonly used for system identification, which generates “equivalent” high-order normalized linear ordinary differential equations that can be coupled with models for other fluid power components and easily solved in the time domain using preprogramed numerical algorithms for ordinary differential equations.

References

1.
Wylie
,
E. B.
, and
Streeter
,
V. L.
,
1978
,
Fluid Transients
,
McGraw-Hill
,
New York
.
2.
Hullender
,
D. A.
, and
Woods
,
R. L.
,
1981
, “
Evaluation of V/STOL Flying Quality With Fluidic Controls
,” Naval Air Systems Command, Contract No. N0019-80-C-0257.
3.
Woods
,
R. L.
,
1981
, “
The Effects of Source and Load Impedance Connected to Fluid Transmission Lines
,”
Fluid Transmission Lines Dynamics Winter Annual Meeting
, Washington, DC, Nov. 15–20, ASME, New York, pp.
73
93
.
4.
Chaudhry
,
M. H.
,
1987
,
Applied Hydraulic Transients
,
Van Nostrand Reinhold
,
New York
.
5.
Watton
,
J.
,
1989
,
Fluid Power Systems
,
Prentice Hall
,
New York
.
6.
Hullender
,
D. A.
,
1990
, “
Effects of Fluid Transmission Lines in Pressure Measurement
,”
Instrumentation and Control—Fundamentals and Applications
,
Wiley
,
Somerset, NJ
, pp.
434
438
.
7.
Yang
,
W. C.
,
Glidewell
,
J. M.
,
Tobler
,
W. E.
, and
Chui
,
G. K.
,
1991
, “
Dynamic Modeling and Analysis of Automotive Multi-Port Electronic Fuel Delivery System
,”
ASME J. Dyn. Syst. Meas. Control
,
113
(
1
), pp.
143
151
.
8.
Glidewell
,
J. M.
,
Yang
,
W. C.
, and
Chui
,
G. K.
,
1993
, “
On-Board Diagnostic Strategy for Multi-Port Electronic Fuel Injection Systems Using Fuel Transient Analysis
,” Advanced Automotive Technologies, Proceedings of the 1993 ASME Winter Annual Meeting, New Orleans, LA, Nov. 28–Dec. 3,
ASME Dynamic Systems and Control Division Publication (DSC)
,
52
, pp. 257–265.
9.
Yang
,
W. C.
, and
Tobler
,
W. E.
,
1993
, “
Dynamic Modeling and Analysis of Electronically Controlled Power Steering System
,” Advanced Automotive Technologies, Proceedings of the 1993 ASME Winter Annual Meeting, New Orleans, LA, Nov. 28–Dec. 3, ASME Dynamic Systems and Control Division Publication (DSC),
52
, pp. 267–278.
10.
Wylie
,
E. B.
, and
Streeter
,
V. L.
,
1993
,
Fluid Transients in Systems
,
Prentice Hall
,
Upper Saddle River, NJ
.
11.
Woods
,
R. L.
, and
Lawrence
,
K. L.
,
1997
,
Modeling and Simulation of Dynamic Systems
,
Prentice Hall
,
Upper Saddle River, NJ
.
12.
Liou
,
J. Y.
, and
Li
,
G.
,
2003
, “
Transient Pressure Measurements by Recess-Mounted Transducers
,”
ASME
Paper No. FEDSM2003-45252.
13.
Hullender
,
D.
,
2015
, “
Transfer Function Approximations Using Inverse Frequency Domain Analysis
,”
Dynamics Modeling and Simulation
, 11th ed., (Course Notes), University of Texas at Arlington, Arlington, TX, pp.
54
64
.
14.
Yang
,
W. C.
,
Glidewell
,
J. M.
,
Tobler
,
W. E.
, and
Chui
,
G. K.
,
1991
, “
Dynamic Modeling and Analysis of Automotive Multi-Port Electronic Fuel Delivery System
,”
ASME J. Dyn. Syst. Meas. Control
,
113
(1), pp. 143–151.
15.
Bergant
,
A.
,
Anderson
,
A.
,
Nicolet
,
C.
,
Karadzic
,
U.
, and
Mazij
,
J.
,
2012
, “
Issues Related to Fluid Transients in Refurbished and Upgraded Hydropower Schemes
,”
BHR Group—11th International Conferences on Pressure Surges
, Lisbon, Portugal, Oct. 24–26, pp.
15
25
.
16.
Gong
,
J.
,
Lambert
,
M. F.
,
Simpson
,
A. R.
, and
Zecchin
,
A. C.
,
2012
, “
Distributed Deterioration Detection in Single Pipelines Using Transient Measurements From Pressure Transducer Pairs
,”
BHR Group—11th International Conferences on Pressure Surges
, Lisbon, Portugal, Oct. 24–26, pp.
127
140
.
17.
Shamloo
,
H.
, and
Mousavifard
,
M.
,
2015
, “
Numerical Simulation of Turbulent Pipe Flow for Water Hammer
,”
ASME J. Fluids Eng.
,
137
(
11
), p.
111203
.
18.
Mu
,
D.-J.
,
Li
,
C.-C.
,
Yan
,
H.
, and
Sun
,
M.
,
2012
, “
Characteristic-Based Numerical Analysis of Transitional Flow in Servo-Controlled Hydraulic Pipelines
,”
Binggong Xuebao/Acta Armanentarii
,
33
(
12
), pp.
1455
1460
.
19.
Gong
,
J.
,
Simpson
,
A. R.
,
Lambert
,
M. F.
,
Zecchin
,
A. C.
,
Kim
,
Y.
, and
Tijsseling
,
A. S.
,
2013
, “
Detection of Distributed Deterioration in Single Pipes Using Transient Reflections
,”
ASCE J. Pipeline Syst. Eng. Pract.
,
4
(
1
), pp.
32
40
.
20.
Zecchin
,
A. C.
,
White
,
L. B.
,
Lambert
,
M. F.
, and
Simpson
,
A. R.
,
2013
, “
Parameter Identification of Fluid Line Networks by Frequency-Domain Maximum Likelihood Estimation
,”
Mech. Syst. Signal Process.
,
37
(
1–2
), pp.
370
387
.
21.
Wahba
,
E. M.
,
2015
, “
On the Propagation and Attenuation of Turbulent Fluid Transients in Circular Pipes
,”
ASME J. Fluids Eng.
,
138
(3), p.
031106
.
22.
Tazraei
,
P.
, and
Riasi
,
A.
,
2016
, “
Quasi-Two-Dimensional Numerical Analysis of Fast Transient Flow Considering Non-Newtonian Effects
,”
ASME J. Fluids Eng.
,
138
(
1
), p.
011203
.
23.
Oliveira
,
G. M.
,
Franco
,
A. T.
, and
Negrao
,
C. O. R.
,
2016
, “
Mathematical Model for Viscoplastic Fluid Hammer
,”
ASME J. Fluids Eng.
,
138
(
1
), p.
011301
.
24.
Chaudhry
,
M. H.
,
2014
,
Applied Hydraulic Transients
,
Springer
, New York.
25.
Joukowski
,
N. E.
,
1898
, “
Memoirs of the Imperial Academy Society of St. Petersburg
,”
American Water Works Association
, Vol.
24
, pp.
341
424
.
26.
Allievi
,
L.
,
1929
,
The Theory of Water Hammer
,
ASME
,
New York
.
27.
Brown
,
F. T.
,
1962
, “
The Transient Response of Fluid Lines
,”
ASME J. Basic Eng.
,
84
(
4
), pp.
547
553
.
28.
Streeter
,
V. L.
, and
Wylie
,
E. B.
,
1967
,
Hydraulic Transients
,
McGraw-Hill
,
New York
.
29.
Streeter
,
V. L.
, and
Wylie
,
E. B.
,
1974
, “
Water Hammer and Surge Control
,”
Annu. Rev. Fluid Mech.
,
6
(
1
), pp.
57
73
.
30.
Bird
,
R. B.
,
Armstrong
,
R. C.
, and
Hassager
,
O.
,
1987
,
Dynamics of Polymeric Liquids
, 2nd ed., Wiley, New York, Chap, 2.
31.
Ghidaoui
,
M. S.
,
Zhao
,
M.
,
McInnis
,
D. A.
, and
Axworthy
,
D. H.
,
2005
, “
A Review of Water Hammer Theory and Practice
,”
ASME J. Appl. Mech.
,
58
(
1
), pp.
49
76
.
32.
Bergant
,
A.
,
Simpson
,
A. R.
, and
Tijsseling
,
A. S.
,
2006
, “
Water Hammer With Column Separation: A Historical Review
,”
J. Fluids Struct.
,
22
(
2
), pp.
135
171
.
33.
Brunone
,
B.
,
Karney
,
B. W.
,
Mecarelli
,
M.
, and
Ferrante
,
M.
,
2000
, “
Velocity Profiles and Unsteady Pipe Friction in Transient Flow
,”
ASCE J. Water Resour. Plann. Manage
,
126
(
4
), pp.
236
244
.
34.
Brunone
,
B.
,
Ferrante
,
M.
, and
Cacciamani
,
M.
,
2004
, “
Decay of Pressure and Energy Dissipation in Laminar Transient Flow
,”
ASME J. Fluids Eng.
,
126
(
6
), pp.
928
934
.
35.
Vardy
,
A. E.
, and
Brown
,
J. M. B.
,
2003
, “
Transient Turbulent Friction in Smooth Pipe Flows
,”
J. Sound Vib.
,
259
(
5
), pp.
1011
1036
.
36.
Weinerowska-Bords
,
K.
,
2015
, “
Alternative Approach to Convolution Term of Viscoelasticity in Equations of Unsteady Pipe Flow
,”
ASME J. Fluids Eng.
,
137
(
5
), p.
054501
.
37.
Meniconi
,
S.
,
Duan
,
H. F.
,
Brunone
,
B.
,
Ghidaoui
,
M. S.
,
Lee
,
P. J.
, and
Ferrante
,
M.
,
2014
, “
Further Developments in Rapidly Decelerating Turbulent Pipe Flow Modeling
,”
ASCE J. Hydraul. Eng.
,
140
(
7
), p. 04014028.
38.
Pezzinga
,
G.
,
Brunone
,
B.
,
Cannizzaro
,
D.
,
Ferrante
,
M.
,
Meniconi
,
S.
, and
Berni
,
A.
,
2014
, “
Two-Dimensional Features of Viscoelastic Models of Pipe Transients
,”
ASCE J. Hydraul. Eng.
,
140
(
8
), p. 04014036.
39.
Storli
,
P.
, and
Nielsen
,
T. K.
,
2011
, “
Transient Friction in Pressurized Pipes I: Investigation of Zielke's Model
,”
ASCE J. Hydraul. Eng.
,
137
(
5
), pp.
557
584
.
40.
Duan
,
H. F.
,
Ghidaoui
,
M. S.
,
Lee
,
P. J.
, and
Tung
,
Y. K.
,
2012
, “
Relevance of Unsteady Friction to Pipe Size and Length in Pipe Fluid Transients
,”
ASCE J. Hydraulic Eng.
,
138
(
2
), pp.
154
166
.
41.
Johnston
,
D. N.
,
2011
, “
Numerical Modelling of Unsteady Turbulent Flow in Smooth-Walled Pipes
,”
Proc. Inst. Mech. Eng., Part C
,
225
(
7
), pp.
1601
1613
.
42.
Zhao
,
M.
, and
Ghidaoui
,
M. S.
,
2006
, “
Investigation of Turbulence Behavior in Pipe Transient Using a Model
,”
J. Hydraul. Res.
,
44
(
5
), pp.
682
692
.
43.
Vardy
,
A. E.
,
Brown
,
J. M. B.
, and
Hwang
,
K.
,
1993
, “
A Weighting Function Model of Transient Turbulent Pipe Friction
,”
J. Hydraul. Res.
,
31
(
4
), pp.
533
548
.
44.
Stecki
,
J. S.
, and
Davis
,
D. C.
,
1985
, “
Fluid Transmission Lines—Distributed Parameter Models Part 1: A Review of the State of the Art
,”
Proc. Inst. Mech. Eng.
,
200
(
4
), pp.
215
228
.
45.
Goodson
,
R. E.
, and
Leonard
,
R. G.
,
1971
, “
A Survey of Modeling Techniques for Fluid Line Transients
,”
ASME J. Basic Eng.
,
94
(2), pp. 474–482.
46.
Azouz
,
I.
, and
Shirazi
,
S. A.
,
1998
, “
Evaluation of Several Turbulence Models for Turbulent Flow in Concentric and Eccentric Annuli
,”
ASME J. Energy Resour., Technol.
,
120
(
12
), pp.
268
275
.
47.
Anderson
,
A.
, and
Bergant
,
A.
,
2008
, “
Issues in ‘Benchmarking’ Fluid Transients Software Models
,”
10th International Conference on Pressure Surges: Surge Analysis—System Design, Simulation, Monitoring and Control
, BHR Group, Edinburgh, UK, May 14–16, pp.
519
537
.
48.
Adamkowski
,
A.
, and
Lewandowski
,
M.
,
2006
, “
Experimental Examination of Unsteady Friction Models for Transient Pipe Flow Simulation
,”
ASME J. Fluids Eng.
,
128
(
11
), pp.
1351
1363
.
49.
Bergant
,
A.
,
Simpson
,
A. R.
, and
Vitkovsk
,
J.
,
2001
, “
Developments in Unsteady Pipe Flow Friction Modelling
,”
J. Hydraul. Res.
,
39
(
3
), pp.
249
257
.
50.
Ghidaoui
,
M. S.
, and
Mansour
,
S.
,
2002
, “
Efficient Treatment of the Vardy-Brown Unsteady Shear in Pipe Transients
,”
ASCE J. Hydraul. Eng.
,
128
(
1
), pp.
102
112
.
51.
Woods
,
R. L.
,
Hsu
,
C. H.
,
Chung
,
C. H.
, and
Keyser
,
D. R.
,
1983
, “
Comparison of Theoretical and Experimental Fluid Line Responses With Source and Load Impedances
,”
Fluid Transmission Lines Dynamics
,
ASME
,
New York
.
52.
Paynter
,
H. M.
,
1962
, “
Lumped Structures, Methods, and Apparatus and Approximations of Uniform Media by Lumped Structures
,”
U.S. Patent No. 3,044,703
, filed June 24, 1954 and issued July 17, 1962.
53.
Holland
,
C. M.
,
Blade
,
R. J.
, and
Dorsch
,
R. G.
,
1965
, “
Attenuation of Sinusoidal Perturbations Superimposed on Laminar Flow of a Liquid in a Long Line
,”
NASA Technical Report No. TN D-3099
.
54.
Gerlach
,
C. R.
,
1966
, “
The Dynamics of Viscous Fluid Transmission Lines With Particular Emphasis on Higher Mode Propagation
,” Ph.D. dissertation, Oklahoma State University, Stillwater, OK.
55.
Zielke
,
W.
,
1968
, “
Frequency-Dependent Friction in Transient Pipe Flow
,”
ASME J. Basic Eng.
,
90
(
1
), pp.
109
115
.
56.
Brown
,
F. T.
,
Margolis
,
D. L.
, and
Shah
,
R. P.
,
1969
, “
Small-Amplitude Frequency Behavior of Fluid Lines With Turbulent Flow
,”
ASME J. Basic Eng.
,
91
(
4
), pp.
678
693
.
57.
Gerlach
,
C. R.
,
1969
, “
Dynamic Models for Viscous Fluid Transmission Lines
,”
10th Joint Automatic Control Conference
, Boulder, CO, Aug. 5–7, pp.
416
424
.
58.
Suzuki
,
K.
,
Taketomi
,
T.
, and
Sato
,
S.
,
1991
, “
Improving Zielke's Method of Simulating Frequency-Dependent Friction in Laminar Liquid Pipe Flow
,”
ASME J. Fluids Eng.
,
113
(4), pp. 569–573.
59.
Karam
,
J. T.
, and
Leonard
,
R. G.
,
1973
, “
A Simple yet Theoretically Based Time Domain Model for Fluid Transmission Line Systems
,”
ASME J. Fluids Eng.
,
95
(
4
), pp.
498
504
.
60.
Trikha
,
A. K.
,
1975
, “
An Efficient Method for Simulating Frequency-Dependent Friction in Transient Liquid Flow
,”
ASME J. Fluids Eng.
,
97
(
1
), pp.
97
105
.
61.
Hullender
,
D.
, and
Healey
,
A.
,
1981
, “
State Variable Representation of Modal Approximation for Fluid Transmission Line Models
,”
Fluid Transmission Lines Dynamics
,
ASME
,
New York
.
62.
Hullender
,
D.
, and
Healey
,
A. J.
,
1981
, “
Rational Polynomial Approximation for Fluid Transmission Line Models
,”
Fluid Transmission Lines Dynamics
,
ASME
,
New York
.
63.
Hullender
,
D.
,
Woods
,
R.
, and
Hunn
,
R.
,
1981
, “
Transfer Functions for Fluid Transmission Lines With Differential Signals
,”
Fluid Transmission Lines Dynamics
,
ASME
,
New York
.
64.
Hsue
,
C. Y.
, and
Hullender
,
D. A.
,
1983
, “
Modal Approximations for the Fluid Dynamics of Hydraulic and Pneumatic Transmission Lines
,”
Fluid Transmission Lines Dynamics
,
ASME
,
New York
.
65.
Hullender
,
D. A.
, and
Woods
,
R. L.
,
1983
, “
Time Domain Simulation of Fluid Transmission Lines Using Minimum Order State Variable Models
,”
Fluid Transmission Lines Dynamics
,
ASME
,
New York
.
66.
Hullender
,
D.
, and
Healey
,
A. J.
,
1981
, “
Rational Polynomial Approximation for Fluid Transmission Line Models
,”
Fluid Transmission Lines Dynamics
,
ASME
,
New York
.
67.
Yang
,
W.-C.
,
1983
, “
Modal Approximation of Hydraulic Transmission Line Models by Using Simplified Bessel Function Ratio
,” M.S. thesis, The University of Texas at Arlington, Arlington, TX.
68.
Nursilo
,
W. S.
,
2000
, “
Fluid Transmission Line Dynamics
,” Ph.D. dissertation, The University of Texas at Arlington, Arlington, TX.
69.
Book
,
W. J.
, and
Watson
,
C.
,
2000
, “
Alternatives in the Generation of Time Domain Models of Fluid Lines Using Frequency Domain Techniques
,”
Math. Comput. Simul.
,
53
(4–6), pp.
353
365
.
70.
Wongputorn
,
P.
,
2001
, “
Time Domain Simulation of Systems With Fluid Transmission Lines
,” M.S. thesis, The University of Texas at Arlington, Arlington, TX.
71.
Wongputorn
,
P.
,
Hullender
,
D.
,
Woods
,
R.
, and
King
,
J.
,
2003
, “
A Simplified Method for Formulating the Simulation Diagram for Systems Containing Lines With Fluid Transients
,”
ASME
Paper No. FEDSM2003-45246.
72.
Wongputorn
,
P.
,
Hullender
,
D.
,
Woods
,
R.
, and
King
,
J.
,
2005
, “
Application of MATLAB Functions for Simulation of Systems With Lines With Fluid Transients
,”
ASME J. Fluids Eng.
,
127
(
1
), pp.
177
182
.
73.
Vardy
,
A. E.
, and
Brown
,
J. M. B.
,
2004
, “
Efficient Approximation of Unsteady Friction Weighting Functions
,”
ASCE J. Hydraul. Eng.
,
130
(
11
), pp.
1097
1107
.
74.
Soumelidis
,
M. I.
,
Johnston
,
D. N.
, and
Edge
,
K. A.
,
2005
, “
A Comparative Study of Modeling Techniques for Laminar Flow Transients in Hydraulic Pipelines
,”
Proc. JFPS Int. Symp. Fluid Power
,
2005
(6), pp.
100
105
.
75.
Johnston
,
D. N.
,
2006
, “
Efficient Methods for Numerical Modeling of Laminar Friction in Fluid Lines
,”
ASME J. Dyn. Syst. Meas. Control
,
128
(
4
), pp.
829
834
.
76.
Kojima
,
E.
,
Yamazaki
,
T.
, and
Shinada
,
M.
,
2006
, “
Development of a New Simulation Technique Based on the Modal Approximation for Fluid Transients in Complex Pipeline Systems With Time-Variant Nonlinear Boundary Conditions
,”
ASME J. Fluids Eng.
,
129
(
6
), pp.
791
798
.
77.
Johnston
,
D. N.
,
2006
, “
A Time Domain Model of Axial Wave Propagation in Liquid-Filled Flexible Hoses
,”
Proc. Inst. Mech. Eng, Part I
,
220
(
7
), pp.
517
530
.
78.
Zecchin
,
A. C.
,
2009
, “
Inverse Laplace Transform for Transient-State Fluid Line Network Simulation
,”
ASCE J. Eng. Mech.
,
135
(
6
), pp.
538
547
.
79.
Axin
,
M.
,
Braun
,
R.
, and
Dell'Amico
,
A.
,
2010
, “
Next Generation Simulation Software Using Transmission Line Elements
,”
Bath/ASME
Symposium on Fluid Power and Motion Control
, Bath, UK.
80.
Johnston
,
D. N.
,
2011
, “
Numerical Modeling of Unsteady Turbulent Flow in Smooth-Walled Pipes
,”
Proc. Inst. Mech. Eng. Part C
,
225
(
7
), pp.
1601
1615
.
81.
Vitkovsky
,
J. P.
,
Lee
,
P. J.
,
Zecchin
,
A. C.
,
Simpson
,
A. R.
, and
Lambert
,
M. F.
,
2011
, “
Head- and Flow-Based Formulations for Frequency Domain Analysis of Fluid Transients in Arbitrary Pipe Networks
,”
ASCE J. Hydraul. Eng.
,
137
(
5
), pp.
556
568
.
82.
Chen
,
H.-Y.
,
Liu
,
H.-J.
,
Chen
,
J.-H.
, and
Liu
,
S.
,
2012
, “
Numerical Simulation of Fluid Transients by Chebyshev Super Spectral Viscosity Method for Propellant Lines
,”
J. Propul. Technol.
,
33
(
5
), pp.
804
808
.
83.
Johnston
,
N.
,
Pan
,
N.
, and
Kudzma
,
S.
,
2014
, “
An Enhanced Transmission Line Method for Modelling Laminar Flow of Liquid in Pipelines
,”
J. Syst. Control Eng.
,
228
(
4
), pp.
193
206
.
84.
Huang
,
Y.-W.
,
2012
, “
Lumped Parameter Modeling of Fluid Line Dynamics With Turbulent Flow Conditions
,”
Ph.D. dissertation
, University of Texas at Arlington, Arlington, TX.
85.
Jianing
,
P.
,
2003
, “
A Novel Technique for Analyzing Hydraulic Transients By Method of Characteristics
,”
ASME
Paper No. FEDSM2003-45250.
86.
Shimada
,
M.
, and
Vardy
,
A. E.
,
2013
, “
Nonlinear Interaction of Friction and Inter-Polation Errors in Unsteady Flow Analyses
,”
ASCE J. Hydraul. Eng.
,
139
(
4
), pp.
397
409
.
87.
Riasi
,
A.
,
Nourbakhsh
,
A.
, and
Raisee
,
M.
,
2012
, “
Energy Dissipation in Unsteady Turbulent Pipe Flows Caused by Water Hammer
,”
Comput. Fluids
,
73
(1), pp.
124
133
.
88.
Vardy
,
A. E.
,
2008
, “
Method of Characteristics in Quasi-Steady Compressible Flows
,”
10th International Conference on Pressure Surges
, BHR Group Pressure Surges, Edinburgh, UK, May 14–16, pp.
505
518
.
89.
Szymkiewicz
,
R.
, and
Mitosek
,
M.
,
2014
, “
Alternative Convolution Approach to Friction in Unsteady Pipe Flow
,”
ASME J. Fluids Eng.
,
136
(
1
), p.
011202
.
90.
Brunone
,
B.
, and
Morelli
,
L.
,
1999
, “
Automatic Control Valve Induced Transients in an Operative Pipe System
,”
ASCE J. Hydraul. Eng.
,
125
(
5
), pp.
534
542
.
91.
Levi
,
E. C.
,
1959
, “
Complex-Curve Fitting
,”
IRE Trans. Autom. Control
,
AC-4
(
1
), pp.
37
43
.
92.
Sanathanan
,
C. K.
, and
Tsukui
,
H.
,
1974
, “
Synthesis of Transfer Function from Frequency Response Data
,”
Intl. J. Systems Sci.
,
5
(1), pp.
51
54
.
93.
Ljung
,
L.
,
1993
, “
Some Results on Identifying Linear Systems Using Frequency Domain
,” 32nd
IEEE
Conference on Decision and Control
, San Antonio, TX, pp.
3534
3538
.
94.
de Vries
,
D. K.
, and
Van den Hof
,
P. M. J.
,
1998
, “
Frequency Domain Identification With Generalized Orthonormal Basis Functions
,”
IEEE Trans. Automatic Control
,
43
(5), pp. 656–669.
95.
Bayard
,
D. S.
,
1994
, “
High-Order Multivariable Transfer Function Curve Fitting: Algorithms, Sparse Matrix Methods and Experimental Results
,”
Automatica
,
30
(
9
), pp.
1439
1444
.
96.
Jasteh
,
S.
,
2015
, “
Considerations for Generating Accurate Linear Transfer Functions for Laminar Flow Transmission Line Dynamics
,”
M.S. thesis
, The University of Texas at Arlington, Arlington, TX.
97.
Mote, Bryan,
2015
, “
Application of Inverse Frequency Algorithm to Nonlinear Fluid Line Transfer Functions
,” M.S. thesis, The University of Texas at Arlington, Arlington, TX.
98.
Hullender
,
D. A.
,
2016
, “
MATLAB M-files, Suggestions, and Applications for the Inverse Frequency Method
,” last modified June 1, 2016, https://uta.box.com/s/s3w0e09dszfk21jrnuszg9h7a1ixd2x1
99.
Stephens
,
M. L.
,
Lambert
,
A. M.
,
Simpson
,
A. R.
, and
Vitkovsky
,
J. P.
,
2011
, “
Calibrating the Water Hammer Response of a Field Pipe Network by Using a Mechanical Damping Model
,”
ASCE J. Hydraul. Eng.
,
137
(
10
), pp.
1225
1237
.
100.
Huang
,
Y.-W.
,
2012
, “
Lumped Parameter Modeling of Fluid Line Dynamics With Turbulent Flow Conditions
,”
Ph.D. dissertation
, University of Texas at Arlington, Arlington, TX.
101.
Pezzinga
,
G.
,
2000
, “
Evaluation of Unsteady Flow Resistances by Quasi-2D or 1D Models
,”
ASCE J. Hydraul. Eng.
,
126
(
10
), pp.
778
785
.
102.
Vardy
,
A. E.
, and
Hwang
,
K.-L.
,
1991
, “
A Characteristic Model of Transient Friction in Pipes
,”
J. Hydraul. Res.
,
29
(
5
), pp.
669
683
.
103.
Brunone
,
B.
, and
Golia
,
U. M.
,
2008
, “
Discussion of ‘Systematic Evaluation of One-Dimensional Unsteady Friction Models in Simple Pipelines' by J.P. Vitkovsky, A. Bergant, A.R. Simpson, and M. F. Lambert
,”
ASCE J. Hydraul. Eng.
,
134
(
2
), pp.
282
284
.
104.
Brunone
,
B.
, and
Berni
,
A.
,
2010
, “
Wall Shear Stress in Transient Turbulent Pipe Flow by Local Velocity Measurement
,”
ASCE J. Hydraul. Eng.
,
136
(
10
), pp.
716
726
.
105.
Vardy
,
A. E.
, and
Brown
,
J. M. B.
,
1995
, “
Transient, Turbulent, Smooth Pipe Flow
,”
J. Hydraul. Res.
,
33
(
4
), pp.
435
456
.
106.
Ghidaoui
,
M. S.
,
Mansour
,
S. G. S.
, and
Zhao
,
M.
,
2002
, “
Applicability of Quasisteady and Axisymmetric Turbulence Models in Water Hammer
,”
ASCE J. Hydraul. Eng.
,
128
(
10
), pp.
917
924
.
107.
D'Souza
,
A. F.
,
1963
, “
Dynamic Response of Fluid Flow Through Straight and Curved Lines
,” Ph.D. dissertation, Purdue University, Lafayette, IN.
108.
Karam
,
J. T.
, and
Franke
,
M. E.
,
1967
, “
The Frequency Response of Pneumatic Lines
,”
ASME J. Basic Eng.
,
89
(
2
), pp.
371
378
.
109.
Roberts
,
W. J.
,
1963
, “
Experimental Dynamic Response of Fluid Lines
,” M.S. thesis, Purdue University, Lafayette, IN.
You do not currently have access to this content.