The attenuation of turbulent fluid transients in pipes is numerically investigated in the present study using one-dimensional (1D) and two-dimensional (2D) water hammer models. The method of characteristics (MOC) is used for the integration of the 1D model, while the semidiscretization approach and the fourth-order accurate Runge–Kutta method are used for the integration of the 2D model. The present results for a reservoir–pipe–valve system indicate that the damping of the transient is governed by a nondimensional parameter representing the ratio of the steady-state frictional head to the Joukowsky pressure head. Based on this parameter, the attenuation of the transient could be classified into three main categories. The first category is for values of the nondimensional parameter much smaller than unity, where attenuation of the transient is insignificant and line packing effects are negligible. The second category is for values of the parameter approaching unity, where the attenuation of the transient is significant and line packing results in a pressure rise at the valve that is slightly higher than the Joukowsky pressure rise. The third category is for values of the parameter much greater than unity, such as in long cross-country pipelines, where the transient is damped out within a few cycles and excessive line packing effects would result in a pressure rise at the valve that is significantly larger the Joukowsky pressure rise.

References

1.
Brunone
,
B.
,
Karney
,
B. W.
,
Mecarelli
,
M.
, and
Ferrante
,
M.
,
2000
, “
Velocity Profiles and Unsteady Pipe Friction in Transient Flow
,”
J. Water Resour. Plann. Manage.
,
126
(
4
), pp.
236
244
.
2.
Hino
,
M.
,
Masaki
,
S.
, and
Shuji
,
T.
,
1976
, “
Experiments on Transition to Turbulence in an Oscillatory Pipe Flow
,”
J. Fluid Mech.
,
75
(
2
), pp.
193
207
.
3.
Brunone
,
B.
, and
Berni
,
A.
,
2010
, “
Wall Shear Stress in Transient Turbulent Pipe Flow by Local Velocity Measurement
,”
J. Hydraul. Eng.
,
136
(
10
), pp.
716
726
.
4.
Wahba
,
E. M.
,
2008
, “
Modeling the Attenuation of Laminar Fluid Transients in Piping Systems
,”
Appl. Math. Modell.
,
32
(
12
), pp.
2863
2871
.
5.
Brunone
,
B.
,
Ferrante
,
M.
, and
Cacciamani
,
M.
,
2004
, “
Decay of Pressure and Energy Dissipation in Laminar Transient Flow
,”
ASME J. Fluids Eng.
,
126
(
6
), pp.
928
934
.
6.
Bergant
,
A.
,
Tijsseling
,
A. S.
,
Vítkovský
,
J. P.
,
Covas
,
D. I. C.
,
Simpson
,
A. R.
, and
Lambert
,
M. F.
,
2008
, “
Parameters Affecting Water-Hammer Wave Attenuation, Shape and Timing—Part 1: Mathematical Tools
,”
J. Hydraul. Res.
,
46
(
3
), pp.
373
381
.
7.
Bergant
,
A.
,
Tijsseling
,
A. S.
,
Vítkovský
,
J. P.
,
Covas
,
D. I. C.
,
Simpson
,
A. R.
, and
Lambert
,
M. F.
,
2008
, “
Parameters Affecting Water-Hammer Wave Attenuation, Shape and Timing—Part 2: Case Studies
,”
J. Hydraul. Res.
,
46
(
3
), pp.
382
391
.
8.
Ghidaoui
,
M. S.
,
Mansour
,
S. G.
, and
Zhao
,
M.
,
2002
, “
Applicability of Quasi-Steady and Axisymmetric Turbulence Models in Water Hammer
,”
J. Hydraul. Eng.
,
128
(
10
), pp.
917
924
.
9.
Wang
,
X. J.
,
Lambert
,
M. F.
,
Simpson
,
A. R.
,
Liggett
,
J. A.
, and
Vitkovsky
,
J. P.
,
2002
, “
Leak Detection in Pipelines Using the Damping of Fluid Transients
,”
J. Hydraul. Eng.
,
128
(
7
), pp.
697
711
.
10.
Kim
,
S. H.
,
Zecchin
,
A.
, and
Choi
,
L.
,
2014
, “
Diagnosis of a Pipeline System for Transient Flow in Low Reynolds Number With Impedance Method
,”
J. Hydraul. Eng.
,
140
(
12
), p.
04014063
.
11.
Zielke
,
W.
,
1968
, “
Frequency-Dependent Friction in Transient Pipe Flow
,”
ASME J. Fluids Eng.
,
90
(
1
), pp.
109
115
.
12.
Szymkiewicz
,
R.
, and
Mitosek
,
M.
,
2013
, “
Alternative Convolution Approach to Friction in Unsteady Pipe Flow
,”
ASME J. Fluids Eng.
,
136
(
1
), p.
011202
.
13.
Brunone
,
B.
,
Golia
,
U. M.
, and
Greco
,
M.
,
1995
, “
Effects of Two-Dimensionality on Pipe Transients Modeling
,”
J. Hydraul. Eng.
,
121
(
12
), pp.
906
912
.
14.
Vardy
,
A. E.
, and
Hwang
,
K. L.
,
1993
, “
A Weighting Function Model of Transient Turbulent Pipe Friction
,”
J. Hydraul. Res.
,
31
(
4
), pp.
533
548
.
15.
Vardy
,
A.
, and
Brown
,
J.
,
2004
, “
Efficient Approximation of Unsteady Friction Weighting Functions
,”
J. Hydraul. Eng.
,
130
(
11
), pp.
1097
1107
.
16.
Storli
,
P. T.
, and
Nielsen
,
T. K.
,
2010
, “
Transient Friction in Pressurized Pipes. II: Two-Coefficient Instantaneous Acceleration-Based Model
,”
J. Hydraul. Eng.
,
137
(
6
), pp.
679
695
.
17.
Wahba
,
E. M.
,
2006
, “
Runge–Kutta Time-Stepping Schemes With TVD Central Differencing for the Water Hammer Equations
,”
Int. J. Numer. Methods Fluids
,
52
(
5
), pp.
571
590
.
18.
Nathan
,
G. K.
,
Tan
,
J. K.
, and
Ng
,
K. C.
,
1988
, “
Two‐Dimensional Analysis of Pressure Transients in Pipelines
,”
Int. J. Numer. Methods Fluids
,
8
(
3
), pp.
339
349
.
19.
Mitra
,
A. K.
, and
Rouleau
,
W. T.
,
1985
, “
Radial and Axial Variations in Transient Pressure Waves Transmitted Through Liquid Transmission Lines
,”
ASME J. Fluids Eng.
,
107
(
1
), pp.
105
111
.
20.
Duan
,
H. F.
,
Ghidaoui
,
M. S.
,
Lee
,
P. J.
, and
Tung
,
Y. K.
,
2012
, “
Relevance of Unsteady Friction to Pipe Size and Length in Pipe Fluid Transients
,”
J. Hydraul. Eng.
,
138
(
2
), pp.
154
166
.
21.
Meniconi
,
S.
,
Duan
,
H. F.
,
Brunone
,
B.
,
Ghidaoui
,
M. S.
,
Lee
,
P. J.
, and
Ferrante
,
M.
,
2014
, “
Further Developments in Rapidly Decelerating Turbulent Pipe Flow Modeling
,”
J. Hydraul. Eng.
,
140
(
7
), p.
04014028
.
22.
Pezzinga
,
G.
,
1999
, “
Quasi-2D Model for Unsteady Flow in Pipe Networks
,”
J. Hydraul. Eng.
,
125
(
7
), pp.
676
685
.
23.
Vardy
,
A. E.
, and
Hwang
,
K. L.
,
1991
, “
A Characteristics Model of Transient Friction in Pipes
,”
J. Hydraul. Res.
,
29
(
5
), pp.
669
684
.
24.
Silva-Araya
,
W. F.
, and
Chaudhry
,
M. H.
,
1997
, “
Computation of Energy Dissipation in Transient Flow
,”
J. Hydraul. Eng.
,
123
(
2
), pp.
108
115
.
25.
Zhao
,
M.
, and
Ghidaoui
,
M. S.
,
2006
, “
Investigation of Turbulence Behavior in Pipe Transient Using a k–∊ Model
,”
J. Hydraul. Res.
,
44
(
5
), pp.
682
692
.
26.
Riasi
,
A.
,
Nourbakhsh
,
A.
, and
Raisee
,
M.
,
2013
, “
Energy Dissipation in Unsteady Turbulent Pipe Flows Caused by Water Hammer
,”
Comput. Fluids
,
73
, pp.
124
133
.
27.
Wahba
,
E. M.
,
2009
, “
Turbulence Modeling for Two-Dimensional Water Hammer Simulations in the Low Reynolds Number Range
,”
Comput. Fluids
,
38
(
9
), pp.
1763
1770
.
28.
Vardy
,
A. E.
,
Brown
,
J. M. B.
,
He
,
S.
,
Ariyaratne
,
C.
, and
Gorji
,
S.
,
2015
, “
Applicability of Frozen-Viscosity Models of Unsteady Wall Shear Stress
,”
J. Hydraulic Eng.
,
141
(
1
), p.
04014064
.
29.
Shamloo
,
H.
, and
Mousavifard
,
M.
,
2015
, “
Turbulence Behaviour Investigation in Transient Flows
,”
J. Hydraul. Res.
,
53
(
1
), pp.
83
92
.
30.
Ghidaoui
,
M. S.
,
Zhao
,
M.
,
McInnis
,
D. A.
, and
Axworthy
,
D. H.
,
2005
, “
A Review of Water Hammer Theory and Practice
,”
ASME Appl. Mech. Rev.
,
58
(
1
), pp.
49
76
.
31.
Wylie
,
E. B.
, and
Streeter
,
V. L.
,
1993
,
Fluid Transients in Systems
,
Prentice Hall
,
Upper Saddle River, NJ
.
32.
Baldwin
,
B. S.
, and
Lomax
,
H.
,
1978
, “
Thin-Layer Approximation and Algebraic Model for Separated Turbulent Flows
,”
AIAA
Paper No. 78-257.
33.
Bergant
,
A.
,
Vítkovský
,
J.
,
Simpson
,
A. R.
, and
Lambert
,
M.
,
2001
, “
Valve Induced Transients Influenced by Unsteady Pipe Flow Friction
,”
10th International Meeting of the Work Group on the Behaviour of Hydraulic Machinery under Steady Oscillatory Conditions
, pp.
12
23
.
34.
Marcinkiewicz
,
J.
,
Adamowski
,
A.
, and
Lewandowski
,
M.
,
2008
, “
Experimental Evaluation of Ability of Relap5, Drako®, Flowmaster2 and Program Using Unsteady Wall Friction Model to Calculate Water Hammer Loadings on Pipelines
,”
Nucl. Eng. Des.
,
238
(
8
), pp.
2084
2093
.
35.
Warda
,
H.
,
Haddara
,
S.
, and
Wahba
,
E.
,
2014
, “
Fluid Hammer and Fatigue Analysis for Oil Transport Pipelines With Peak Points
,”
ASME
Paper No. PVP2014-28070.
36.
American Society of Mechanical Engineers
,
2009
,
Standard for Verification and Validation in Computational Fluid Dynamics and Heat Transfer
,
ASME
,
New York
.
37.
Kaplan
,
M.
,
Streeter
,
V. L.
, and
Wylie
,
E. B.
,
1967
, “
Computation of Oil Pipeline Transients
,”
ASCE J. Pipeline Div.
,
93
(
3
), pp.
59
71
.
You do not currently have access to this content.