Computational analyses of fluid flow through packed pebble bed domains using the Reynolds-averaged Navier–Stokes (RANS) framework have had limited success in the past. Because of a lack of high-fidelity experimental or computational data, optimization of Reynolds-averaged closure models for these geometries has not been extensively developed. In the present study, direct numerical simulation (DNS) was employed to develop a high-fidelity database that can be used for optimizing Reynolds-averaged closure models for pebble bed flows. A face-centered cubic (FCC) domain with periodic boundaries was used. Flow was simulated at a Reynolds number of 9308 and cross-verified by using available quasi-DNS data. During the simulations, low-frequency instability modes were observed that affected the stationary solution. These instabilities were investigated by using the method of proper orthogonal decomposition, and a correlation was found between the time-dependent asymmetry of the averaged velocity profile data and the behavior of the highest-energy eigenmodes. Finally, the effects of the domain size and the method of averaging were investigated to determine how these parameters influenced the stationary solution. A violation of the ergodicity assumption was observed.

References

1.
Fütterer
,
M. A.
,
Fu
,
L.
,
Sink
,
C.
,
de Groot
,
S.
,
Pouchon
,
M.
,
Kim
,
Y. W.
,
Carré
,
F.
, and
Tachibana
,
Y.
,
2014
, “
Status of the Very High Temperature Reactor System
,”
Prog. Nucl. Energy
,
77
, pp.
266
281
.
2.
Sabharwall
,
P.
,
Bragg-Sitton
,
S. M.
, and
Stoots
,
C.
,
2013
, “
Challenges in the Development of High Temperature Reactors
,”
Energy Convers. Manage.
,
74
, pp.
574
581
.
3.
Lohnert
,
G.
,
1990
, “
Technical Design Features and Essential Safety-Related Properties of the HTR-Module
,”
Nucl. Eng. Des.
,
121
(
2
), pp.
259
275
.
4.
Lee
,
J. Y.
, and
Lee
,
S. Y.
,
2008
, “
Flow Visualization of Pebble Bed HTGR
,”
ASME
Paper No. HTR2008-58063.
5.
Hassan
,
Y. A.
,
2008
, “
Large Eddy Simulation in Pebble Bed Gas Cooled Core Reactors
,”
Nucl. Eng. Des.
,
238
(
3
), pp.
530
537
.
6.
Eisfeld
,
B.
, and
Schnitzlein
,
K.
,
2001
, “
The Influence of Confining Walls on the Pressure Drop in Packed Beds
,”
Chem. Eng. Sci.
,
56
(
14
), pp.
4321
4329
.
7.
du Toit
,
C. G.
, and
Rousseau
,
P. G.
,
2012
, “
Modeling the Flow and Heat Transfer in a Packed Bed High Temperature Gas-Cooled Reactor in the Context of a Systems CFD Approach
,”
ASME J. Heat Transfer
,
134
(
3
), p.
031015
.
8.
Rousseau
,
P.
,
du Toit
,
C.
, and
Landman
,
W.
,
2006
, “
Validation of a Transient Thermal-Fluid Systems CFD Model for a Packed Bed High Temperature Gas-Cooled Nuclear Reactor
,”
Nucl. Eng. Des.
,
236
(
5–6
), pp.
555
564
.
9.
Shams
,
A.
,
Roelofs
,
F.
,
Komen
,
E.
, and
Baglietto
,
E.
,
2012
, “
Quasi-Direct Numerical Simulation of a Pebble Bed Configuration—Part I: Flow (Velocity) Field Analysis
,”
Nucl. Eng. Des.
,
263
, pp.
473
489
.
10.
Shams
,
A.
,
Roelofs
,
F.
,
Komen
,
E. M. J.
, and
Baglietto
,
E.
,
2012
, “
Optimization of a Pebble Bed Configuration for Quasi-Direct Numerical Simulation
,”
Nucl. Eng. Des.
,
242
, pp.
331
340
.
11.
Hassan
,
Y. A.
, and
Dominguez-Ontiveros
,
E. E.
,
2008
, “
Flow Visualization in a Pebble Bed Reactor Experiment Using PIV and Refractive Index Matching Techniques
,”
Nucl. Eng. Des.
,
238
(
11
), pp.
3080
3085
.
12.
Merzari
,
E.
,
Pointer
,
W. D.
,
Smith
,
J. G.
,
Tentner
,
A.
, and
Fischer
,
P.
,
2012
, “
Numerical Simulation of the Flow in Wire-Wrapped Pin Bundles: Effect of Pin-Wire Contact Modeling
,”
Nucl. Eng. Des.
,
253
, pp.
374
386
.
13.
Tavakol
,
M.
,
Abouali
,
O.
, and
Yaghoubi
,
M.
,
2015
, “
Large Eddy Simulation of Turbulent Flow Around a Wall Mounted Hemisphere
,”
Appl. Math. Modell.
,
39
(
13
), pp.
3596
3618
.
14.
Rodriguez
,
I.
,
Borell
,
R.
,
Lehmkuhl
,
O.
,
Segarra
,
C. D. P.
, and
Oliva
,
A.
,
2011
, “
Direct Numerical Simulation of the Flow Over a Sphere at Re = 3700
,”
J. Fluid Mech.
,
679
, pp.
263
287
.
15.
Constantinescu
,
G. S.
, and
Squires
,
K. D.
,
2003
, “
LES and DES Investigations of Turbulent Flow Over a Sphere at Re = 10,000
,”
Flow Turbul. Combust.
,
70
(
1
), pp.
267
298
.
16.
Ferziger
,
J. H.
, and
Peric
,
M.
,
2001
,
Computational Methods for Fluid Dynamics
,
Springer
,
Berlin
.
17.
Deville
,
M. O.
,
Fischer
,
P. F.
, and
Mund
,
E. H.
,
2002
,
High-Order Methods for Incompressible Fluid Flow
,
Cambridge University Press
,
New York
.
18.
Pope
,
S. B.
,
2000
,
Turbulent Flows
,
Cambridge University Press
,
New York
.
19.
Achenbach
,
E.
,
1974
, “
Vortex Shedding From Spheres
,”
J. Fluid Mech.
,
62
(
2
), pp.
209
221
.
20.
Taneda
,
S.
,
1978
, “
Visual Observations of the Flow Past a Sphere at Reynolds Numbers Between 104 and 106
,”
J. Fluid Mech.
,
85
(
1
), pp.
187
192
.
21.
Merzari
,
E.
,
Pointer
,
W. D.
, and
Fischer
,
P.
,
2013
, “
Numerical Simulation and Proper Orthogonal Decomposition of the Flow in a Counter-Flow T-Junction
,”
ASME J. Fluids Eng.
,
135
(
9
), p.
091304
.
22.
Makarashvili
,
V.
,
Merzari
,
E.
,
Obabko
,
A.
,
Fischer
,
P.
, and
Siegel
,
A.
,
2016
, “
Accelerating the High-Fidelity Simulation of Turbulence: Ensemble Averaging
,”
ASME
Paper No. FEDSM2016-7853.
23.
Sagaut
,
P.
,
2002
,
Large Eddy Simulation for Incompressible Flows
,
Springer-Verlag
,
Berlin
.
You do not currently have access to this content.