Poiseuille flows at two Reynolds numbers (Re) 2.5 × 10−2 and 5.0 are simulated by two different smoothed particle hydrodynamics (SPH) schemes on regular and irregular initial particles' distributions. In the first scheme, the viscous stress is calculated directly by the basic SPH particle approximation, while in the second scheme, the viscous stress is calculated by the combination of SPH particle approximation and finite difference method (FDM). The main aims of this paper are (a) investigating the influences of two different schemes on simulations and reducing the numerical instability in simulating Poiseuille flows discovered by other researchers and (b) investigating whether the similar instability exists in other cases and comparing results with the two viscous stress approximations. For Re = 2.5 × 10−2, the simulation with the first scheme becomes instable after the flow approaches to steady-state. However, this instability could be reduced by the second scheme. For Re = 5.0, no instability for two schemes is found.

References

1.
Lucy
,
L. B.
,
1977
, “
A Numerical Approach to the Testing of the Fission Hypothesis
,”
Astron. J.
,
82
, pp.
1013
1024
.
2.
Gingold
,
R. A.
, and
Monaghan
,
J. J.
,
1977
, “
Smoothed Particle Hydrodynamics—Theory and Application to Non-Spherical Stars
,”
Mon. Not. R. Astron. Soc.
,
181
(
3
), pp.
375
389
.
3.
Monaghan
,
J. J.
,
2012
, “
Smoothed Particle Hydrodynamics and Its Diverse Applications
,”
Annu. Rev. Fluid Mech.
,
44
(
1
), pp.
323
346
.
4.
Shadloo
,
M. S.
,
Oger
,
G.
, and
Le Touzé
,
D.
,
2016
, “
Smoothed Particle Hydrodynamics Method for Fluid Flows, Towards Industrial Applications: Motivations, Current State, and Challenges
,”
Comput. Fluids
,
136
, pp.
11
34
.
5.
Monaghan
,
J. J.
,
1994
, “
Simulating Free Surface Flows With SPH
,”
J. Comput. Phys.
,
110
(
2
), pp.
399
406
.
6.
Farrokhpanah
,
A.
,
Samareh
,
B.
, and
Mostaghimi
,
J.
,
2015
, “
Applying Contact Angle to a Two-Dimensional Multiphase Smoothed Particle Hydrodynamics Model
,”
ASME J. Fluids Eng.
,
137
(
4
), p.
041303
.
7.
Sadek
,
S. H.
, and
Yildiz
,
M.
,
2013
, “
Modeling Die Swell of Second-Order Fluids Using Smoothed Particle Hydrodynamics
,”
ASME J. Fluids Eng.
,
135
(
5
), p.
051103
.
8.
Marrone
,
S.
,
Colagrossi
,
A.
,
Antuono
,
M.
,
Colicchio
,
G.
, and
Graziani
,
G.
,
2013
, “
An Accurate SPH Modeling of Viscous Flows Around Bodies at Low and Moderate Reynolds Numbers
,”
J. Comput. Phys.
,
245
, pp.
456
475
.
9.
Sefid
,
M.
,
Fatehi
,
R.
, and
Shamsoddini
,
R.
,
2015
, “
A Modified Smoothed Particle Hydrodynamics Scheme to Model the Stationary and Moving Boundary Problems for Newtonian Fluid Flows
,”
ASME J. Fluids Eng.
,
137
(3), p.
031201
.
10.
Antoci
,
C.
,
Gallati
,
M.
, and
Sibilla
,
S.
,
2007
, “
Numerical Simulation of Fluid–Structure Interaction by SPH
,”
Comput. Struct.
,
85
, pp.
879
890
.
11.
Liu
,
G. R.
, and
Liu
,
M. B.
,
2003
,
Smoothed Particle Hydrodynamics: A Meshfree Particle Method
,
World Scientific Publishing
,
Singapore
.
12.
Randles
,
P. W.
, and
Libersky
,
L. D.
,
1996
, “
Smoothed Particle Hydrodynamics: Some Recent Improvements and Applications
,”
Comput. Methods Appl. Mech. Eng.
,
139
, pp.
375
408
.
13.
Chen
,
J. K.
,
Beraun
,
J. E.
, and
Carney
,
T. C.
,
1999
, “
A Corrective Smoothed Particle Method for Boundary Value Problems in Heat Conduction
,”
Int. J. Numer. Methods Eng.
,
46
(
2
), pp.
231
252
.
14.
Liu
,
M. B.
,
Xie
,
W. P.
, and
Liu
,
G. R.
,
2005
, “
Modeling Incompressible Flows Using a Finite Particle Method
,”
Appl. Math. Modell.
,
29
(
12
), pp.
1252
1270
.
15.
Liu
,
M. B.
, and
Liu
,
G. R.
,
2006
, “
Restoring Particle Consistency in Smoothed Particle Hydrodynamics
,”
Appl. Numer. Math.
,
56
(
1
), pp.
19
36
.
16.
Fatehi
,
R.
, and
Manzari
,
M. T.
,
2011
, “
Error Estimation in Smoothed Particle Hydrodynamics and a New Scheme for Second Derivatives
,”
Comput. Math. Appl.
,
61
(
2
), pp.
482
498
.
17.
Morris
,
J. P.
,
Fox
,
P. J.
, and
Zhu
,
Y.
,
1997
, “
Modeling Low Reynolds Number Incompressible Flows Using SPH
,”
J. Comput. Phys.
,
136
(
1
), pp.
214
226
.
18.
Sigalotti
,
L. D. G.
,
Klapp
,
J.
,
Sira
,
E.
,
Meleán
,
Y.
, and
Hasmy
,
A.
,
2003
, “
SPH Simulations of Time-Dependent Poiseuille Flow at Low Reynolds Numbers
,”
J. Comput. Phys.
,
191
(
2
), pp.
622
638
.
19.
Liu
,
M. B.
, and
Chang
,
J. Z.
,
2010
, “
Particle Distribution and Numerical Stability in Smoothed Particle Hydrodynamics Method
,”
Acta Phys. Sin.-Chin. Ed.
,
59
, pp.
3654
3662
.
20.
Monaghan
,
J. J.
,
2000
, “
SPH Without a Tensile Instability
,”
J. Comput. Phys.
,
159
(
2
), pp.
290
311
.
21.
Meister
,
M.
,
Burger
,
G.
, and
Rauch
,
W.
,
2014
, “
On the Reynolds Number Sensitivity of Smoothed Particle Hydrodynamics
,”
J. Hydraul. Res.
,
52
(
6
), pp.
824
835
.
22.
Shadloo
,
M. S.
,
Zainali
,
A.
, and
Yildiz
,
M.
,
2013
, “
Simulation of Single Mode Rayleigh–Taylor Instability by SPH Method
,”
Comput. Mech.
,
51
(
5
), pp.
699
715
.
23.
Federico
,
I.
,
Marroneb
,
S.
,
Colagrossi
,
A.
,
Aristodemo
,
F.
, and
Antuonoc
,
M.
,
2012
, “
Simulating 2D Open-Channel Flows Through an SPH Model
,”
Eur. J. Mech. - B/Fluids
,
34
, pp.
35
46
.
24.
Aristodemo
,
F.
,
Marrone
,
S.
, and
Federico
,
I.
,
2015
, “
SPH Modelling of Plane Jets Into Water Bodies Through an Inflow/Outflow
,”
Ocean Eng.
,
105
, pp.
160
175
.
25.
Marrone
,
S.
,
Antuono
,
M.
,
Colagrossi
,
A.
,
Colicchio
,
G.
,
Le Touzé
,
D.
, and
Graziani
,
G.
,
2011
, “
δ-SPH Model for Simulating Violent Impact Flows
,”
Comput. Methods Appl. Mech. Eng.
,
200
, pp.
1526
1542
.
26.
Shadloo
,
M. S.
, and
Yildiz
,
M.
,
2011
, “
Numerical Modeling of Kelvin–Helmholtz Instability Using Smoothed Particle Hydrodynamics
,”
Int. J. Numer. Methods Eng.
,
87
(
10
), pp.
988
1006
.
27.
Di Monaco
,
A.
,
Manenti
,
S.
,
Gallati
,
M.
,
Sibilla
,
S.
,
Agate
,
G.
, and
Guandalini
,
R.
,
2011
, “
SPH Modeling of Solid Boundaries Through a Semi-Analytic Approach
,”
Eng. Appl. Comput. Fluid Mech.
,
5
(1), pp.
1
15
.
28.
Gómez-Gesteira
,
M.
, and
Dalrymple
,
R. A.
,
2004
, “
Using a Three-Dimensional Smoothed Particle Hydrodynamics Method for Wave Impact on a Tall Structure
,”
J. Waterw., Port, Coastal, Ocean Eng.-ASCE
,
130
(
2
), pp.
63
69
.
29.
Monaghan
,
J. J.
, and
Kajtar
,
J. B.
,
2009
, “
SPH Particle Boundary Forces for Arbitrary Boundaries
,”
Comput. Phys. Commun.
,
180
(
10
), pp.
1811
1820
.
30.
White
,
F. M.
,
2006
,
Viscous Fluid Flow
,
McGraw-Hill
,
New York
.
You do not currently have access to this content.