An effective boundary potential has been proposed to solve nonperiodic boundary condition (NPBC) of hybrid method. The optimized hybrid method is applied to investigate the influences of the channel height and solid–liquid interaction parameters on slip characteristics of Couette flows in micro/nanochannels. By changing the channel height, we find that the relative slip lengths show the obvious negative correlation with the channel height and fewer density oscillations are generated near the solid wall in the larger channel height. Moreover, we continue to investigate the solid–liquid interaction parameters, including the solid–liquid energy scales ratio (C1) and solid–liquid length scales ratio (C2). The results show that the solid–liquid surface changes from hydrophobic to hydrophilic with the increase of C1, the arrangement of liquid particles adjacent to the solid particles is more disorganized over the hydrophobic solid–liquid surface compared with the hydrophilic surface, and the probability of the liquid particles that appear near the solid particles becomes smaller. Meanwhile, the relative slip lengths are minimum when the liquid and solid particles have the same diameter. Furthermore, the relative slip lengths follow a linear relationship with the shear rate when the solid–liquid interaction parameters change. The plenty computational time has been saved by the present hybrid method compared with the full molecular dynamics simulation (FMD) in this paper.

References

1.
Karniadakis
,
G. E.
,
Beskok
,
A.
, and
Aluru
,
N.
,
2006
,
Microflows and Nanoflows: Fundamentals and Simulation
, Vol.
29
,
Springer Science & Business Media
, New York.
2.
Yang
,
X.
, and
Zheng
,
Z. C.
,
2010
, “
Effects of Channel Scale on Slip Length of Flow in Micro/Nanochannels
,”
ASME J. Fluids Eng.
,
132
(
6
), p.
061201
.
3.
Thompson
,
P. A.
, and
Troian
,
S. M.
,
1997
, “
A General Boundary Condition for Liquid Flow at Solid Surfaces
,”
Nature
,
389
(
6649
), pp.
360
362
.
4.
Lauga
,
E.
,
Brenner
,
M.
, and
Stone
,
H.
,
2006
,
Handbook of Experimental Fluid Dynamics
, Springer, New York, Chap. 15.
5.
Neto
,
C.
,
Evans
,
D. R.
,
Bonaccurso
,
E.
,
Butt
,
H.-J.
, and
Craig
,
V. S.
,
2005
, “
Boundary Slip in Newtonian Liquids: A Review of Experimental Studies
,”
Rep. Prog. Phys.
,
68
(
12
), pp.
2859
2897
.
6.
Zhu
,
Y.
, and
Granick
,
S.
,
2002
, “
Limits of the Hydrodynamic No-Slip Boundary Condition
,”
Phys. Rev. Lett.
,
88
(
10
), p.
106102
.
7.
Cottin-Bizonne
,
C.
,
Barrat
,
J.-L.
,
Bocquet
,
L.
, and
Charlaix
,
E.
,
2003
, “
Low-Friction Flows of Liquid at Nanopatterned Interfaces
,”
Nat. Mater.
,
2
(
4
), pp.
237
240
.
8.
Sbragaglia
,
M.
,
Benzi
,
R.
,
Biferale
,
L.
,
Succi
,
S.
, and
Toschi
,
F.
,
2006
, “
Surface Roughness-Hydrophobicity Coupling in Microchannel and Nanochannel Flows
,”
Phys. Rev. Lett.
,
97
(
20
), p.
204503
.
9.
Priezjev
,
N. V.
,
2007
, “
Rate-Dependent Slip Boundary Conditions for Simple Fluids
,”
Phys. Rev. E
,
75
(
5
), p.
051605
.
10.
Asproulis
,
N.
, and
Drikakis
,
D.
,
2010
, “
Boundary Slip Dependency on Surface Stiffness
,”
Phys. Rev. E
,
81
(
6
), p.
061503
.
11.
Asproulis
,
N.
, and
Drikakis
,
D.
,
2011
, “
Wall-Mass Effects on Hydrodynamic Boundary Slip
,”
Phys. Rev. E
,
84
(
3
), p.
031504
.
12.
Priezjev
,
N. V.
,
2010
, “
Relationship Between Induced Fluid Structure and Boundary Slip in Nanoscale Polymer Films
,”
Phys. Rev. E
,
82
(
5
), p.
051603
.
13.
Yen
,
T.
,
Soong
,
C.
, and
Tzeng
,
P.
,
2007
, “
Hybrid Molecular Dynamics-Continuum Simulation for Nano/Mesoscale Channel Flows
,”
Microfluid. Nanofluid.
,
3
(
6
), pp.
665
675
.
14.
Mohamed
,
K.
, and
Mohamad
,
A.
,
2010
, “
A Review of the Development of Hybrid Atomistic–Continuum Methods for Dense Fluids
,”
Microfluid. Nanofluid.
,
8
(
3
), pp.
283
302
.
15.
Vu
,
V. H.
,
Trouette
,
B.
,
To
,
Q. D.
, and
Chénier
,
E.
,
2016
, “
Multi-Scale Modelling and Hybrid Atomistic-Continuum Simulation of Non-Isothermal Flows in Microchannels
,”
Microfluid. Nanofluid.
,
20
(
2
), p. 43.
16.
Weinan
,
E.
,
Engquist
,
B.
,
Li
,
X.
,
Ren
,
W.
, and
Vanden-Eijnden
,
E.
,
2007
, “
Heterogeneous Multiscale Methods: A Review
,”
Commun. Comput. Phys.
,
2
(
3
), pp.
367
450
.
17.
O’connell
,
S. T.
, and
Thompson
,
P. A.
,
1995
, “
Molecular Dynamics–Continuum Hybrid Computations: A Tool for Studying Complex Fluid Flows
,”
Phys. Rev. E
,
52
(
6
), p.
R5792
.
18.
Hadjiconstantinou
,
N. G.
, and
Patera
,
A. T.
,
1997
, “
Heterogeneous Atomistic-Continuum Representations for Dense Fluid Systems
,”
Int. J. Mod. Phys. C
,
8
(
4
), pp.
967
976
.
19.
Li
,
J.
,
Liao
,
D.
, and
Yip
,
S.
,
1998
, “
Coupling Continuum to Molecular-Dynamics Simulation: Reflecting Particle Method and the Field Estimator
,”
Phys. Rev. E
,
57
(
6
), pp.
7259
7267
.
20.
Li
,
J.
,
Liao
,
D.
, and
Yip
,
S.
,
1999
, “
Nearly Exact Solution for Coupled Continuum/MD Fluid Simulation
,”
J. Comput.-Aided Mater. Des.
,
6
(
2–3
), pp.
95
102
.
21.
Li
,
J.
,
Liao
,
D.
, and
Yip
,
S.
,
1998
, “
Imposing Field Boundary Conditions in Md Simulation of Fluids: Optimal Particle Controller and Buffer Zone Feedback
,”
Mater. Res. Soc. Symp. Proc.
,
538
, pp.
473
478
.
22.
Flekkøy
,
E.
,
Wagner
,
G.
, and
Feder
,
J.
,
2000
, “
Hybrid Model for Combined Particle and Continuum Dynamics
,”
Europhys. Lett.
,
52
(
3
), pp.
271
276
.
23.
Delgado-Buscalioni
,
R.
, and
Coveney
,
P.
,
2003
, “
Continuum-Particle Hybrid Coupling for Mass, Momentum, and Energy Transfers in Unsteady Fluid Flow
,”
Phys. Rev. E
,
67
(
4
), p.
046704
.
24.
Nie
,
X. B.
,
Chen
,
S. Y.
, and
Robbins
,
M. O.
,
2004
, “
A Continuum and Molecular Dynamics Hybrid Method for Micro- and Nano-Fluid Flow
,”
J. Fluid Mech.
,
500
, pp.
55
64
.
25.
Nie
,
X.
,
Chen
,
S.
, and
Robbins
,
M. O.
,
2004
, “
Hybrid Continuum-Atomistic Simulation of Singular Corner Flow
,”
Phys. Fluids
,
16
(
10
), pp.
3579
3591
.
26.
Nie
,
X.
,
Robbins
,
M. O.
, and
Chen
,
S.
,
2006
, “
Resolving Singular Forces in Cavity Flow: Multiscale Modeling From Atomic to Millimeter Scales
,”
Phys. Rev. Lett.
,
96
(
13
), p.
134501
.
27.
Werder
,
T.
,
Walther
,
J. H.
, and
Koumoutsakos
,
P.
,
2005
, “
Hybrid Atomistic–Continuum Method for the Simulation of Dense Fluid Flows
,”
J. Comput. Phys.
,
205
(
1
), pp.
373
390
.
28.
Cui
,
J.
,
He
,
G. W.
, and
Qi
,
D. W.
,
2006
, “
A Constrained Particle Dynamics for Continuum-Particle Hybrid Method in Micro- and Nano-Fluidics
,”
Acta Mech. Sin.
,
22
(
6
), pp.
503
508
.
29.
Kalweit
,
M.
, and
Drikakis
,
D.
,
2008
, “
Coupling Strategies for Hybrid Molecular-Continuum Simulation Methods
,”
J. Mech. Eng. Sci.
,
222
(
5
), pp.
797
806
.
30.
Kalweit
,
M.
, and
Drikakis
,
D.
,
2008
, “
Multiscale Methods for Micro/Nano Flows and Materials
,”
J. Comput. Theor. Nanosci.
,
5
(
9
), pp.
1923
1938
.
31.
Kalweit
,
M.
, and
Drikakis
,
D.
,
2010
, “
On the Behaviour of Fluidic Material at Molecular Dynamics Boundary Conditions Used in Hybrid Molecular-Continuum Simulations
,”
Mol. Simul.
,
36
(
9
), pp.
657
662
.
32.
Zhou
,
W.
,
Luan
,
H.
,
He
,
Y.
,
Sun
,
J.
, and
Tao
,
W.
,
2014
, “
A Study on Boundary Force Model Used in Multiscale Simulations With Non-Periodic Boundary Condition
,”
Microfluid. Nanofluid.
,
16
(
3
), pp.
587
595
.
33.
Wu
,
H.
,
Fichthorn
,
K.
, and
Borhan
,
A.
,
2014
, “
An Atomistic–Continuum Hybrid Scheme for Numerical Simulation of Droplet Spreading on a Solid Surface
,”
Heat Mass Transfer
,
50
(
3
), pp.
351
361
.
34.
Jeong
,
M.
,
Kim
,
Y.
,
Zhou
,
W.
,
Tao
,
W. Q.
, and
Ha
,
M. Y.
,
2017
, “
Effects of Surface Wettability, Roughness and Moving Wall Velocity on the Couette Flow in Nano-Channel Using Multi-Scale Hybrid Method
,”
Comput. Fluids
,
147
, pp.
1
11
.
35.
Wang
,
Q.
,
Ren
,
X.-G.
,
Xu
,
X.-H.
,
Li
,
C.
,
Ji
,
H.-Y.
, and
Yang
,
X.-J.
,
2017
, “
Coupling Strategies Investigation of Hybrid Atomistic-Continuum Method Based on State Variable Coupling
,”
Adv. Mater. Sci. Eng.
,
2017
, p. 1014636.
36.
Bian
,
X.
,
Deng
,
M.
,
Tang
,
Y.-H.
, and
Karniadakis
,
G. E.
,
2016
, “
Analysis of Hydrodynamic Fluctuations in Heterogeneous Adjacent Multidomains in Shear Flow
,”
Phys. Rev. E
,
93
(
3
), p.
033312
.
37.
Ren
,
X.-G.
,
Wang
,
Q.
,
Xu
,
L.-Y.
,
Yang
,
W.-J.
, and
Xu
,
X.-H.
,
2017
, “
Hacpar: An Efficient Parallel Multiscale Framework for Hybrid Atomistic–Continuum Simulation at the Micro- and Nanoscale
,”
Adv. Mech. Eng.
,
9
(
8
), pp. 1–13.
38.
Kotsalis
,
E.
,
Walther
,
J. H.
, and
Koumoutsakos
,
P.
,
2007
, “
Control of Density Fluctuations in Atomistic-Continuum Simulations of Dense Liquids
,”
Phys. Rev. E
,
76
(
1
), p.
016709
.
39.
Kotsalis
,
E. M.
,
Walther
,
J. H.
,
Kaxiras
,
E.
, and
Koumoutsakos
,
P.
,
2009
, “
Control Algorithm for Multiscale Flow Simulations of Water
,”
Phys. Rev. E
,
79
(
4 Pt 2
), p.
045701
.
40.
Issa
,
K.
, and
Poesio
,
P.
,
2014
, “
Algorithm to Enforce Uniform Density in Liquid Atomistic Subdomains With Specular Boundaries
,”
Phys. Rev. E
,
89
(
4
), p.
043307
.
41.
Huang
,
Z.
,
Guo
,
Z.
,
Yue
,
T.
, and
Chan
,
K.
,
2010
, “
Non-Periodic Boundary Model With Soft Transition in Molecular Dynamics Simulation
,”
Europhys. Lett.
,
92
(
5
), p.
50007
.
42.
Sun
,
J.
,
He
,
Y.-L.
, and
Tao
,
W.-Q.
,
2010
, “
Scale Effect on Flow and Thermal Boundaries in Micro-/Nano-Channel Flow Using Molecular Dynamics–Continuum Hybrid Simulation Method
,”
Int. J. Numer. Methods Eng.
,
81
(
2
), pp.
207
228
.
43.
Thompson
,
P. A.
, and
Robbins
,
M. O.
,
1990
, “
Shear Flow Near Solids: Epitaxial Order and Flow Boundary Conditions
,”
Phys. Rev. A
,
41
(
12
), p.
6830
.
44.
Stevens
,
M. J.
,
Mondello
,
M.
,
Grest
,
G. S.
,
Cui
,
S.
,
Cochran
,
H.
, and
Cummings
,
P.
,
1997
, “
Comparison of Shear Flow of Hexadecane in a Confined Geometry and in Bulk
,”
J. Chem. Phys.
,
106
(
17
), pp.
7303
7314
.
45.
Rapaport
,
D. C.
,
2004
,
The Art of Molecular Dynamics Simulation
,
Cambridge University Press
, New York.
46.
Sun
,
J.
,
He
,
Y. L.
,
Tao
,
W. Q.
,
Rose
,
J. W.
, and
Wang
,
H. S.
,
2012
, “
Multi-Scale Study of Liquid Flow in Micro/Nanochannels: Effects of Surface Wettability and Topology
,”
Microfluid. Nanofluid
,
12
(
6
), pp.
991
1008
.
47.
Sun
,
J.
,
He
,
Y. L.
,
Tao
,
W.
,
Yin
,
X.
, and
Wang
,
H.
,
2012
, “
Roughness Effect on Flow and Thermal Boundaries in Microchannel/Nanochannel Flow Using Molecular Dynamics-Continuum Hybrid Simulation
,”
Int. J. Numer. Methods Eng.
,
89
(
1
), pp.
2
19
.
48.
Delgado-Buscalioni
,
R.
, and
Coveney
,
P.
,
2003
, “
Usher: An Algorithm for Particle Insertion in Dense Fluids
,”
J. Chem. Phys.
,
119
(
2
), pp.
978
987
.
49.
Heinbuch
,
U.
, and
Fischer
,
J.
,
1989
, “
Liquid Flow in Pores: Slip, No-Slip, or Multilayer Sticking
,”
Phys. Rev. A
,
40
(
2
), pp.
1144
1146
.
50.
Cieplak
,
M.
,
Koplik
,
J.
, and
Banavar
,
J. R.
,
2001
, “
Boundary Conditions at a Fluid-Solid Interface
,”
Phys. Rev. Lett
,
86
(
5
), pp.
803
806
.
51.
Galea
,
T.-M.
, and
Attard
,
P.
,
2004
, “
Molecular Dynamics Study of the Effect of Atomic Roughness on the Slip Length at the Fluid–Solid Boundary During Shear Flow
,”
Langmuir
,
20
(
8
), pp.
3477
3482
.
52.
Zhao
,
L.
,
Ji
,
J.
,
Tao
,
L.
, and
Lin
,
S.
,
2016
, “
Ionic Effects on Supercritical CO2–Brine Interfacial Tensions: Molecular Dynamics Simulations and a Universal Correlation With Ionic Strength, Temperature, and Pressure
,”
Langmuir
,
32
(
36
), pp.
9188
9196
.
You do not currently have access to this content.