Oscillatory electrokinetic flow is numerically examined in a rectangular annulus microtube under the influence of various wave forms. When the inner and outer walls of the capillary are oppositely charged, an instantaneous two-direction flow field is produced and consequently the resultant flow rate is relatively reduced. A zero or negative flow rate may be achieved by appropriate design of the channel geometrical characteristics (e.g., hydraulic diameter) as well as the walls charges. In the case of sufficiently low kinematic viscosity and/or high excitation frequency, a relatively thin transient frictional layer is established close to the walls while the bulk fluid lags behind the liquid motion in the electric double layer by a phase shift. If different waveforms are combined together, fascinating outcomes can be obtained depending on the frequency of each individual wave. Applied electric fields with equal- and unequal-frequency combined waves may have the advantages of a double velocity field and a net mass flow rate, respectively. Interestingly, a direct flow pattern may be achieved by appropriately combining various waveforms with unequal frequencies. The mass flow rate decreases, with the constancy of the electrokinetic diameter, with approximately the square of hydraulic diameter. The Poiseuille number exhibits various characteristics depending on the excitation frequency as well as the type of wave especially in combination.

References

1.
Bruus
,
H.
,
2008
,
Theoretical Microfluidics
,
Oxford University Press
,
New York
.
2.
Nguyen
,
N. T.
, and
Wereley
,
S. T.
,
2006
,
Fundamentals and Applications of Microfluidics
,
Artech House
,
Norwood
, Cambridge, MA.
3.
Tabeling
,
P.
,
2005
,
Introduction to Microfluidics
,
Oxford University Press
,
New York
.
4.
Li
,
D.
,
2004
,
Electrokinetics in Microfluidics
,
Elsevier Academic Press
,
Amsterdam
, The Netherlands.
5.
Squires
,
T. M.
, and
Bazant
,
M. Z.
,
2004
, “
Induced-Charge Electro-Osmosis
,”
J. Fluid Mech.
,
509
, pp.
217
252
.
6.
Arulanandam
,
S.
, and
Li
,
D.
,
2000
, “
Liquid Transport in Rectangular Microchannels by Electro-Osmotic Pumping
,”
Colloids Surf., A
,
161
(
1
), pp.
89
102
.
7.
Dutta
,
P.
, and
Beskok
,
A.
,
2001
, “
Analytical Solution of Combined Electroosmotic/Pressure Driven Flows in Two-Dimensional Straight Channels: Finite Debye Layer Effects
,”
Anal. Chem.
,
73
(
9
), pp.
1979
1986
.
8.
Xuan
,
X. C.
, and
Li
,
D.
,
2005
, “
Electroosmotic Flow in Microchannels With Arbitrary Geometry and Arbitrary Distribution of Wall Charge
,”
J. Colloid Interface Sci.
,
289
(
1
), pp.
291
303
.
9.
Kang
,
Y. J.
,
Yang
,
C.
, and
Huang
,
X. Y.
,
2002
, “
Dynamic Aspects of Electroosmotic Flow in a Cylindrical Microcapillary
,”
Int. J. Eng. Sci.
,
40
(
20
), pp.
2203
2221
.
10.
Tsao
,
H. K.
,
2000
, “
Electroosmotic Flow Through an Annulus
,”
J. Colloid Interface Sci.
,
225
(
1
), pp.
247
250
.
11.
Stiles
,
T.
,
Fallon
,
R.
,
Vestad
,
T.
,
Oakey
,
J.
,
Marr
,
D. W. M.
,
Squier
,
J.
, and
Jimenez
,
R.
,
2005
, “
Hydrodynamic Focusing for Vacuum-Pumped Microfluidics
,”
Microfluid. Nanofluid.
,
1
(
3
), pp.
280
283
.
12.
Zhang
,
K.
,
Jiang
,
L.
,
Gao
,
Z.
,
Zhai
,
C.
,
Yan
,
W.
, and
Wu
,
S.
,
2018
, “
Design and Numerical Study of Micropump Based on Induced Electroosmotic Flow
,”
J. Nanotechnol.
,
2018
, p.
4018503
.
13.
Zhao
,
C.
,
Zhang
,
W.
, and
Yang
,
C.
,
2017
, “
Dynamic Electroosmotic Flows of Power-Law Fluids in Rectangular Microchannels
,”
Micromachines
,
8
(
2
), p. 34.
14.
Bianchetti
,
A.
,
Sanchez
,
S. H.
, and
Cabaleiro
,
J. M.
,
2016
, “
Electroosmotic Flow Profile Distortion due to Laplace Pressures at the End Reservoirs
,”
Microfluid. Nanofluid.
,
20
(
11
), pp.
1
12
https://link.springer.com/article/10.1007/s10404-015-1698-6.
15.
Moghadam
,
A. J.
,
2016
, “
Two-Fluid Electrokinetic Flow in a Circular Microchannel
,”
Int. J. Eng., Trans. A
,
29
(
10
), pp.
1469
1477
.http://www.ije.ir/Vol29/No10/A/abstract-2345.html
16.
Erickson
,
D.
, and
Li
,
D.
,
2003
, “
Analysis of Alternating Current Electroosmotic Flows in a Rectangular Microchannel
,”
Langmuir
,
19
(
13
), pp.
5421
5430
.
17.
Dutta
,
P.
, and
Beskok
,
A.
,
2001
, “
Analytical Solution of Time Periodic Electroosmotic Flows: Analogies to Stokes Second Problem
,”
Anal. Chem.
,
73
(
21
), pp.
5097
5102
.
18.
Green
,
N. G.
,
Ramos
,
A.
,
Gonzalez
,
A.
,
Morgan
,
H.
, and
Castellanos
,
A.
,
2000
, “
Fluid Flow Induced by Non-Uniform AC Electric Fields in Electrolytes on Microelectrodes I: Experimental Measurements
,”
Phys. Rev. E
,
61
(
4
), pp.
4011
4018
.
19.
Gonzalez
,
A.
,
Ramos
,
A.
,
Green
,
N. G.
,
Castellanos
,
A.
, and
Morgan
,
H.
,
2000
, “
Fluid Flow Induced by Non-Uniform AC Electric Fields in Electrolytes on Microelectrodes II: A Linear Double Layer Analysis
,”
Phys. Rev. E
,
61
, pp.
4019
4028
.
20.
Brown
,
A. B. D.
,
Smith
,
C. G.
, and
Rennie
,
A. R.
,
2001
, “
Pumping of Water With an AC Electric Field Applied to Asymmetric Pairs of Microelectrodes
,”
Phys. Rev. E
,
63
, p.
016305
.https://journals.aps.org/pre/abstract/10.1103/PhysRevE.63.016305
21.
Peralta
,
M.
,
Arcos
,
J.
,
Mendez
,
F.
, and
Bautista
,
O.
,
2017
, “
Oscillatory Electroosmotic Flow in a Parallel-Plate Microchannel Under Asymmetric Zeta Potentials
,”
Fluid Dyn. Res.
,
49
(
3
), p.
035514
.
22.
Moghadam
,
A. J.
,
2012
, “
An Exact Solution of AC Electro-Kinetic-Driven Flow in a Circular Micro-Channel
,”
Eur. J. Mech. B/Fluids
,
34
, pp.
91
96
.
23.
Moghadam
,
A. J.
,
2013
, “
Exact Solution of AC Electro-Osmotic Flow in a Microannulus
,”
ASME J. Fluids Eng.
,
135
(
9
), p.
091201
.
24.
Moghadam
,
A. J.
,
2014
, “
Effect of Periodic Excitation on Alternating Current Electroosmotic Flow in a Microannular Channel
,”
Eur. J. Mech. B/Fluids
,
48
, pp.
1
12
.
25.
Escandon
,
J.
,
Merino
,
E. G.
, and
Hernandez
,
C. G.
,
2016
, “
Transient Electroosmotic Flow of Newtonian Fluids in a Microchannel With Heterogeneous Zeta Potentials at the Walls
,”
ASME
Paper No. IMECE2016-65939.
26.
Gheshlaghi
,
B.
,
Nazaripoor
,
H.
,
Kumar
,
A.
, and
Sadrzadeh
,
M.
,
2016
, “
Analytical Solution for Transient Electroosmotic Flow in a Rotating Microchannel
,”
RSC Adv.
,
6
(
21
), pp.
17632
17641
.
27.
Zhao
,
M.
,
Wang
,
S.
, and
Wei
,
S.
,
2013
, “
Transient Electro-Osmotic Flow of Oldroyd-B Fluids in a Straight Pipe of Circular Cross Section
,”
J. Non-Newtonian Fluid Mech.
,
201
, pp.
135
139
.
28.
Moghadam
,
A. J.
, and
Akbarzadeh
,
P.
,
2016
, “
Time-Periodic Electroosmotic Flow of Non-Newtonian Fluids in Microchannels
,”
IJE Trans. B
,
29
(5), pp.
736
744
.http://www.ije.ir/Vol29/No5/B/abstract-2254.html
29.
Moghadam
,
A. J.
, and
Akbarzadeh
,
P.
,
2017
, “
Non-Newtonian Fluid Flow Induced by Pressure Gradient and Time-Periodic Electroosmosis in a Microtube
,”
J. Braz. Soc. Mech. Sci. Eng.
,
39
(
12
), pp.
5015
5025
.
30.
Jimenez
,
E. M.
,
Escandon
,
J. P.
, and
Bautista
,
O. E.
,
2015
, “
Study of the Transient Electroosmotic Flow of Maxwell Fluids in Square Cross-Section Microchannels
,”
ASME
Paper No. ICNMM2015-48547.
31.
Kaushik
,
P.
,
Mandal
,
S.
, and
Chakraborty
,
S.
,
2017
, “
Transient Electroosmosis of a Maxwell Fluid in a Rotating Microchannel
,”
Electrophoresis
,
38
(
21
), pp.
2741
2748
.
32.
Kirby
,
B. J.
,
2010
,
Micro- and Nanoscale Fluid Mechanics
,
Cambridge University Press
,
New York
.
33.
Kandlikar
,
S.
,
Garimella
,
S.
,
Li
,
D.
,
Colin
,
S.
, and
King
,
M. R.
,
2006
,
Heat Transfer and Fluid Flow in Minichannels and Microchannels
,
Elsevier
,
Waltham
, MA.
34.
Hoffman
,
J. D.
,
2001
,
Numerical Methods for Engineers and Scientists
,
Marcel Dekker
,
New York
.
You do not currently have access to this content.