Abstract

This paper proposes an approximate solution for the varying speed impact of three-dimensional (3D) bodies on the water surface, with the assumptions that the fluid is considered to be incompressible, inviscid, weightless, and with negligible surface tension effects and the flow to be irrotational. The approximate solution provides a linear relationship between Cp and a dimensionless variable K, and the equation of body acceleration. These equations can be used to rapidly predict the pressure distribution on the body surface and the motions of the body. The predictions of the approximate solution match the computational fluid dynamics results very well for the varying speed impacts, including the normal and oblique impacts of a cone on the water surface and the normal impact of a pyramid on the water surface. The present approximate solution can be suitable for the two-dimensional, axisymmetric, and fully 3D impacts of bodies on the water surface with varying speed.

References

1.
Abelson
,
H. I.
,
1971
, “
A Prediction of Water-Entry Cavity Shape
,”
ASME J. Fluids Eng.
,
93
(
4
), pp.
501
503
. 10.1115/1.3425291
2.
Bodily
,
K. G.
,
Carlson
,
S. J.
, and
Truscott
,
T. T.
,
2014
, “
The Water Entry of Slender Axisymmetric Bodies
,”
Phys. Fluids
,
26
(
7
), pp.
072108
072178
.10.1063/1.4890832
3.
Gao
,
J.
,
Chen
,
Z.
,
Huang
,
Z.
,
Wu
,
W.
, and
Xiao
,
Y.
,
2019
, “
Numerical Investigations on the Oblique Water Entry of High-Speed Projectiles
,”
Appl. Math. Comput.
,
362
, p.
124547
.10.1016/j.amc.2019.06.061
4.
Song
,
Z.
,
Duan
,
W.
,
Xu
,
G.
, and
Zhao
,
B.
,
2020
, “
Experimental and Numerical Study of the Water Entry of Projectiles at High Oblique Entry Speed
,”
Ocean Eng.
,
211
, p.
107574
.10.1016/j.oceaneng.2020.107574
5.
Li
,
Z.
,
Sun
,
L.
,
Yao
,
X.
,
Wang
,
D.
, and
Li
,
F.
,
2020
, “
Experimental Study on Cavity Dynamics in High Froude Number Water Entry for Different Nosed Projectiles
,”
Appl. Ocean Res.
,
102
, p.
102305
.10.1016/j.apor.2020.102305
6.
Korobkin
,
A.
,
1992
, “
Blunt-Body Impact on a Compressible Liquid Surface
,”
J. Fluid Mech.
,
244
(
1
), pp.
437
453
.10.1017/S0022112092003136
7.
Hong
,
Y.
,
Wang
,
B.
, and
Liu
,
H.
,
2019
, “
Numerical Study of Hydrodynamic Loads at Early Stage of Vertical High-Speed Water Entry of an Axisymmetric Blunt Body
,”
Phys. Fluids
,
31
(
10
), p.
102105
.10.1063/1.5121283
8.
Wagner
,
H.
,
1932
, “
Über Stoß-Und Gleitvorgänge an Der Oberfläche Von Flüssigkeiten
,”
ZAMM-J. Appl. Math. Mech.
,
12
(
4
), pp.
193
215
.10.1002/zamm.19320120402
9.
Wang
,
J.
,
Lugni
,
C.
, and
Faltinsen
,
O. M.
,
2015
, “
Experimental and Numerical Investigation of a Freefall Wedge Vertically Entering the Water Surface
,”
Appl. Ocean Res.
,
51
, pp.
181
203
.10.1016/j.apor.2015.04.003
10.
Iafrati
,
A.
,
2016
, “
Experimental Investigation of the Water Entry of a Rectangular Plate at High Horizontal Velocity
,”
J. Fluid Mech.
,
799
, pp.
637
672
.10.1017/jfm.2016.374
11.
Abrate
,
S.
,
2011
, “
Hull Slamming
,”
ASME Appl. Mech. Rev.
,
64
(
6
), p.
060803
.10.1115/1.4023571
12.
Von Karman
,
T.
,
1929
, “
The Impact on Seaplane Floats During Landing
,” National Advisory Council for Aeronautics (NACA), Langley Field, VA, Report No. 321.
13.
Shiffman
,
M.
, and
Spencer
,
D.
,
1951
, “
The Force of Impact on a Cone Striking a Water Surface (Vertical Entry)
,”.
Commun. Pure Appl. Math.
,
4
(
4
), pp.
379
417
.10.1002/cpa.3160040402
14.
Faltinsen
,
O. M.
, and
Zhao
,
R.
,
1998
, “
Water Entry of Ship Sections and Axisymmetric Bodies
,” High Speed Body Motion Water, Neuilly-sur-Seine, France, AGARD Report No.
827 21-1-24-11
.https://archive.org/details/faltinsenzhao1998
15.
Logvinovich
,
G. V.
,
1972
,
Hydrodynmaics of Free-Boundary Flows
,
Israel Program for Scientific Translations
,
Jerusalem, Israel
.
16.
Backer
,
G. D.
,
Vantorre
,
M.
,
Beels
,
C.
,
Pré
,
J. D.
,
Victor
,
S.
,
Rouck
,
J. D.
,
Blommaert
,
C.
, and
Paepegem
,
W. V.
,
2009
, “
Experimental Investigation of Water Impact on Axisymmetric Bodies
,”
Appl. Ocean Res.
,
31
(
3
), pp.
143
156
.10.1016/j.apor.2009.07.003
17.
Zhao
,
R.
, and
Faltinsen
,
O. M.
,
1993
, “
Water Entry of Two-Dimensional Bodies
,”
J. Fluid Mech.
,
246
, pp.
593
612
.10.1017/S002211209300028X
18.
Scolan
,
Y. M.
, and
Korobkin
,
A. A.
,
2001
, “
Three-Dimensional Theory of Water Impact: Part 1—Inverse Wagner Problem
,”
J. Fluid Mech.
,
440
, pp.
293
326
.10.1017/S002211200100475X
19.
Korobkin
,
A. A.
, and
Scolan
,
Y. M.
,
2006
, “
Three-Dimensional Theory of Water Impact: Part 2—Linearized Wagner Problem
,”
J. Fluid Mech.
,
549
(
1
), p.
343
.10.1017/S0022112005008049
20.
Battistin
,
D.
, and
Iafrati
,
A.
,
2003
, “
Hydrodynamic Loads During Water Entry of Two-Dimensional and Axisymmetric Bodies
,”
J. Fluids Struct.
,
17
(
5
), pp.
643
664
.10.1016/S0889-9746(03)00010-0
21.
Xu
,
G.
,
Duan
,
W.
, and
Wu
,
G.
,
2011
, “
Numerical Simulation of Water Entry of a Cone in Free-Fall Motion
,”
Q. J. Mech. Appl. Math.
,
64
(
3
), pp.
265
285
.10.1093/qjmam/hbr003
22.
Sun
,
S.
, and
Wu
,
G.
,
2013
, “
Oblique Water-Entry of Non-Axisymmetric Bodies at Varying Speed by a Fully Nonlinear Method
,”
Q. J. Mech. Appl. Math.
,
66
(
3
), pp.
366
393
.10.1093/qjmam/hbt011
23.
Wu
,
G.
, and
Sun
,
S.
,
2014
, “
Similarity Solution for Oblique Water Entry of an Expanding Paraboloid
,”
J. Fluid Mech.
,
745
, pp.
398
408
.10.1017/jfm.2014.111
24.
Sun
,
S.
, and
Wu
,
G.
,
2014
, “
Oblique Impact of a Water Cone on a Solid Wall
,”
Eur. J. Mech. B/Fluids
,
43
, pp.
120
130
.10.1016/j.euromechflu.2013.08.003
25.
Sun
,
S. L.
,
Liu
,
B. W.
, and
Zhang
,
A. M.
,
2019
, “
On the Fully Nonlinear Water Entry of a Cone in Stokes Wave—Sciencedirect
,”
Eng. Anal. Boundary Elem.
,
98
, pp.
232
242
.10.1016/j.enganabound.2018.10.019
26.
Hirt
,
C. W.
, and
Nichols
,
B. D.
,
1981
, “
Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries
,”
J. Comput. Phys.
,
39
(
1
), pp.
201
225
.10.1016/0021-9991(81)90145-5
27.
Muzaferija
,
S.
,
Peric
,
M.
,
Sames
,
P.
, and
Schellin
,
T.
,
1998
, “
A Two-Fluid Navier-Stokes Solver to Simulate Water Entry
,”
Proceedings of 22nd Symposium on Naval Architecture
,
National Academy Press
, Washington, DC, Aug. 9–14, pp.
277
289
.https://ci.nii.ac.jp/naid/10019844096/en/
28.
Qu
,
Q.
,
Hu
,
M.
,
Guo
,
H.
,
Liu
,
P.
, and
Agarwal
,
R. K.
,
2015
, “
Numerical Simulation of Water-Landing Performance of a Regional Aircraft
,”
J. Aircr.
,
52
(
5
), pp.
1550
1558
.10.2514/1.C032993
29.
Zhang
,
X.
,
Liu
,
P.
,
Qu
,
Q.
,
Zhao
,
Y.
,
Hu
,
T.
, and
Agarwal
,
R. K.
,
2018
, “
Numerical Analysis of the Pressure Peak Position Shift With Deadrise Angle in Two-Dimensional Wedge Water Entry
,”
ASME J. Fluids Eng.
,
140
(
11
), p.
111101
.10.1115/1.4040067
30.
Oger
,
G.
,
Doring
,
M.
,
Alessandrini
,
B.
, and
Ferrant
,
P.
,
2006
, “
Two-Dimensional SPH Simulations of Wedge Water Entries
,”
J. Comput. Phys.
,
213
(
2
), pp.
803
822
.10.1016/j.jcp.2005.09.004
31.
Xiao
,
T.
,
Qin
,
N.
,
Lu
,
Z.
,
Sun
,
X.
,
Tong
,
M.
, and
Wang
,
Z.
,
2017
, “
Development of a Smoothed Particle Hydrodynamics Method and Its Application to Aircraft Ditching Simulations
,”
Aerosp. Sci. Technol.
,
66
, pp.
28
43
.10.1016/j.ast.2017.02.022
32.
Gong
,
K.
,
Shao
,
S.
,
Liu
,
H.
,
Lin
,
P.
, and
Gui
,
Q.
,
2019
, “
Cylindrical Smoothed Particle Hydrodynamics Simulations of Water Entry
,”
ASME J. Fluids Eng.
,
141
(
7
), 071303.10.1115/1.4042369
33.
Dobrovol'Skaya
,
Z.
,
1969
, “
On Some Problems of Similarity Flow of Fluid With a Free Surface
,”
J. Fluid Mech.
,
36
(
4
), pp.
805
829
.10.1017/S0022112069001996
34.
Wu
,
G.
,
2012
, “
Numerical Simulation for Water Entry of a Wedge at Varying Speed by a High Order Boundary Element Method
,”
J. Mar. Sci. Appl.
,
11
(
2
), pp.
143
149
.10.1007/s11804-012-1116-3
35.
Wen
,
X.
,
Liu
,
P.
,
Qu
,
Q.
, and
Hu
,
T.
,
2020
, “
Impact of Wedge Bodies on Wedge-Shaped Water Surface With Varying Speed
,”
J. Fluids Struct.
,
92
, p.
102831
.10.1016/j.jfluidstructs.2019.102831
36.
Wen
,
X.
,
Liu
,
P.
,
Qu
,
Q.
, and
Hu
,
T.
,
2020
, “
Impact of a Plate on an Asymmetric Water Wedge
,”
ASME J. Fluids Eng.
,
142
(
4
), p.
041301
.10.1115/1.4045330
37.
Wen
,
X.
,
Liu
,
P.
,
Qu
,
Q.
, and
Hu
,
T.
,
2020
, “
Numerical and Theoretical Study on the Varying Speed Impact of Wedge Bodies on a Water Surface
,”
ASME J. Fluids Eng.
, 143(
1
), p.
011201
.10.1115/1.4048132
38.
Baldwin
,
J. L.
,
1971
, “
Vertical Water Entry of Cones
,” Naval Ordnance Lab., White Oak, MD, Silver Spring, MD, Technical Report No.
AD0723821
.https://apps.dtic.mil/sti/citations/AD0723821
39.
Alaoui
,
A. E. M.
,
Nême
,
A.
,
Tassin
,
A.
, and
Jacques
,
N.
,
2012
, “
Experimental Study of Coefficients During Vertical Water Entry of Axisymmetric Rigid Shapes at Constant Speeds
,”
Appl. Ocean Res.
,
37
, pp.
183
197
.10.1016/j.apor.2012.05.007
40.
Guo
,
B.
,
Liu
,
P.
,
Qu
,
Q.
, and
Cui
,
Y.
,
2012
, “
Turbulence Models Performance Assessment for Pressure Prediction During Cylinder Water Entry
,”
Ind. Des. Mech. Power Book Ser.
,
224
, pp.
225
229
.10.4028/www.scientific.net/AMM.224.225
41.
Carcaterra
,
A.
,
Ciappi
,
E.
,
Iafrati
,
A.
, and
Campana
,
E. F.
,
2000
, “
Shock Spectral Analysis of Elastic Systems Impacting on the Water Surface
,”
J. Sound Vib.
,
229
(
3
), pp.
579
605
.10.1006/jsvi.1999.2517
42.
Odar
,
F.
, and
Hamilton
,
W. S.
,
1964
, “
Forces on a Sphere Accelerating in a Viscous Fluid
,”
J. Fluid Mech.
,
18
(
2
), pp.
302
314
.10.1017/S0022112064000210
You do not currently have access to this content.