Abstract

Metal additive manufacturing (AM) of heat exchanger enables custom and conformal designs for a wide range of applications. However, one challenge with metal AM is the resultant surface roughness formed when using this process, which is nonexistent during traditional manufacturing processes. The goal in this study is to explore how this roughness impacts the pressure drop and flow field of a commonly used heat exchanger surface called an offset strip fin (OSF). Two OSFs of the same geometry are tested: one with an average fin roughness of 34 μm from metal AM and the other with an average fin roughness 2.5 μm, used as a baseline. The roughness from the metal AM process increased pressure losses and transitioned the flow to turbulent-like behavior at lower Reynolds numbers when compared with the smooth fin. Laser Doppler velocimetry (LDV) measurements captured the row number in the fin array where transition from laminar to turbulent-like flow occurred. The location of transition from low to high turbulence levels occurred earlier in the fin array as the Reynolds number was increased for the smooth and rough fins. Wake profiles of time-averaged axial velocity were similar between the rough and smooth fins, with the rough fins having higher levels of turbulence intensity (TI) and less symmetric wake profiles. Overall, this study indicates that a pressure loss penalty is associated with using metal AM OSF due to the resultant surface roughness and an earlier transition to turbulent-like flow.

References

1.
Bloschock
,
K. P.
, and
Bar-Cohen
,
A.
,
2012
, “
Advanced Thermal Management Technologies for Defense Electronics
,”
Proc. SPIE
8405
, p.
84050I
.10.1117/12.924349
2.
Patankar
,
S. V.
, and
Prakash
,
C.
,
1981
, “
An Analysis of the Effect of Plate Thickness on Laminar Flow and Heat Transfer in Interrupted-Plate Passages
,”
Int. J. Heat Mass Transfer
,
24
(
11
), pp.
1801
1810
.10.1016/0017-9310(81)90146-0
3.
Guo
,
L.
,
Qin
,
F.
,
Chen
,
J.
,
Chen
,
Z.
, and
Zhou
,
Y.
,
2007
, “
Influence of Geometrical Factors and Pressing Mould Wear on Thermal-Hydraulic Characteristics for Steel Offset Strip Fins at Low Reynolds Number
,”
Int. J. Therm. Sci.
,
46
(
12
), pp.
1285
1296
.10.1016/j.ijthermalsci.2006.12.009
4.
Garde
,
K.
,
2017
, “
Design and Manufacture of an Oil Cooler by Additive Manufacturing
,” M.S. thesis,
University of Minnesota
,
Minneapolis, MN
.https://conservancy.umn.edu/handle/11299/188801
5.
Stimpson
,
C. K.
,
Snyder
,
J. C.
,
Thole
,
K. A.
, and
Mongillo
,
D.
,
2016
, “
Roughness Effects on Flow and Heat Transfer for Additively Manufactured Channels
,”
ASME J. Turbomach.
,
138
(
5
), p. 0
51008
.10.1115/1.4032167
6.
Stimpson
,
C. K.
,
Snyder
,
J. C.
,
Thole
,
K. A.
, and
Mongillo
,
D.
,
2016
, “
Scaling Roughness Effects on Pressure Loss and Heat Transfer of Additively Manufactured Channels
,”
ASME J. Turbomach.
,
139
(
2
), p.
021003
.10.1115/1.4034555
7.
Arie
,
M. A.
,
Shooshtari
,
A. H.
, and
Ohadi
,
M. M.
,
2018
, “
Experimental Characterization of an Additively Manufactured Heat Exchanger for Dry Cooling of Power Plants
,”
Appl. Therm. Eng.
,
129
, pp.
187
198
.10.1016/j.applthermaleng.2017.09.140
8.
Hathaway
,
B. J.
,
Garde
,
K.
,
Mantell
,
S. C.
, and
Davidson
,
J. H.
,
2018
, “
Design and Characterization of an Additive Manufactured Hydraulic Oil Cooler
,”
Int. J. Heat Mass Transfer
,
117
, pp.
188
200
.10.1016/j.ijheatmasstransfer.2017.10.013
9.
Bichnevicius
,
M.
,
Saltzman
,
D.
, and
Lynch
,
S.
,
2020
, “
Comparison of Additively Manufactured Louvered Plate-Fin Heat Exchangers
,”
ASME J. Therm. Sci. Eng. Appl.
,
12
(
1
), p. 011018.10.1115/1.4044348
10.
Kirsch
,
K. L.
, and
Thole
,
K. A.
,
2017
, “
Experimental Investigation of Numerically Optimized Wavy Microchannels Created Through Additive Manufacturing
,”
ASME Paper No. GT2017-64934
.10.1115/GT2017-64934
11.
Snyder
,
J. C.
,
Stimpson
,
C. K.
,
Thole
,
K. A.
, and
Mongillo
,
D. J.
,
2015
, “
Build Direction Effects on Microchannel Tolerance and Surface Roughness
,”
ASME J. Mech. Des.
,
137
(
11
), p.
111411
.10.1115/1.4031071
12.
Kays
,
W. M.
, and
London
,
A. L.
,
1984
,
Compact Heat Exchangers
,
McGraw-Hill
,
New York
.
13.
Manglik
,
R. M.
, and
Bergles
,
A. E.
,
1995
, “
Heat Transfer and Pressure Drop Correlations for the Rectangular Offset Strip Fin Compact Heat Exchanger
,”
Exp. Therm. Fluid Sci.
,
10
(
2
), pp.
171
180
.10.1016/0894-1777(94)00096-Q
14.
Webb
,
R.
, and
Kim
,
N.-H.
,
2005
,
Principles of Enhanced Heat Transfer
,
Taylor & Francis
,
Boca Raton, FL
.
15.
Manson
,
S. V.
,
1950
, “
Correlations of Heat-Transfer Data and of Friction Data for Interrupted Plane Fins Staggered in Successive Rows
,”
NASA
,
Cleveland, OH
, Report No. 2237, pp.
1
15
.
16.
Mochizuki
,
S.
, and
Yagi
,
Y.
,
1982
, “
Characteristics of Vortex Shedding in Plate Arrays
,”
Proceedings of the Second Flow Visualization II
,
W.
Merzkirch
, ed.,
Washington, DC
, pp.
99
103
.
17.
Mochizuki
,
S.
,
Yagi
,
Y.
, and
Yang
,
W. J.
,
1988
, “
Flow Pattern and Turbulence Intensity in Stacks of Interrupted Parallel-Plate Surfaces
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
51
57
.10.1016/0894-1777(88)90047-7
18.
Dejong
,
N. C.
, and
Jacobit
,
A. M.
,
1997
, “
An Experimental Study of Flow and Heat Transfer in Parallel-Plate Arrays: Local, Row-by-Row and Surface Average Behavior
,”
Int. J. Heat and Mass Trans.
,
40
(
6
), pp.
1365
1378
.10.1016/S0017-9310(96)00186-X
19.
Lee
,
K. B.
, and
Kwon
,
Y. K.
,
1992
, “
Flow and Thermal Field With Relevance to Heat Transfer Enhancement of Interrupted-Plate Heat Exchangers
,”
Exp. Heat Transfer
,
5
(
2
), pp.
83
100
.10.1080/08916159208946434
20.
Peng
,
H.
,
Ling
,
X.
, and
Li
,
J.
,
2014
, “
Performance Investigation of an Innovative Offset Strip Fin Arrays in Compact Heat Exchangers
,”
Energy Convers. Manage.
,
80
, pp.
287
297
.10.1016/j.enconman.2014.01.050
21.
Bala Sundar Rao
,
R.
,
Ranganath
,
G.
, and
Ranganayakulu
,
C.
,
2013
, “
Development of Colburn ‘j’ Factor and Fanning Friction Factor ‘f’ Correlations for Compact Heat Exchanger Plain Fins by Using CFD
,”
Heat Mass Transfer
,
49
(
7
), pp.
991
1000
.10.1007/s00231-013-1140-0
22.
Yang
,
Y.
, and
Li
,
Y.
,
2014
, “
General Prediction of the Thermal Hydraulic Performance for Plate-Fin Heat Exchanger With Offset Strip Fins
,”
Int. J. Heat Mass Transfer
,
78
, pp.
860
870
.10.1016/j.ijheatmasstransfer.2014.07.060
23.
Kim
,
W. N.
,
Kim
,
S. Y.
, and
Kang
,
B. H.
,
2004
, “
CFD Simulation of Thermal Dissipation From Fan-Added Plate Fin and Offset Strip Fin Heat Sinks
,”
Proceedings of the Intersociety Conference on Thermomechanical Phenomena in Electronic Systems
,
Las Vegas, NV
, June 1–4, pp.
213
217
.10.1109/ITHERM.2004.1319176
24.
Sheik Ismail
,
L.
,
Ranganayakulu
,
C.
, and
Shah
,
R. K.
,
2009
, “
Numerical Study of Flow Patterns of Compact Plate-Fin Heat Exchangers and Generation of Design Data for Offset and Wavy Fins
,”
Int. J. Heat Mass Transfer
,
52
(
17–18
), pp.
3972
3983
.10.1016/j.ijheatmasstransfer.2009.03.026
25.
Pham
,
M. V.
,
Plourde
,
F.
, and
Doan
,
S. K.
,
2008
, “
Large-Eddy Simulations of Staggered Parallel-Plate Fin Heat Exchangers: Effect of Reynolds Number on Flow Topology
,”
Numer. Heat Transfer, Part A
,
53
(
4
), pp.
354
376
.10.1080/10407780701634201
26.
Saidi
,
A.
, and
Sundén
,
B.
,
2001
, “
A Numerical Investigation of Heat Transfer Enhancement in Offset Strip Fin Heat Exchangers in Self-Sustained Oscillatory Flows
,”
Int. J. Numer. Methods Heat Fluid Flow
,
11
(
7
), pp.
699
716
.10.1108/EUM0000000005984
27.
Zhang
,
L. W.
,
Balachandar
,
S.
,
Tafti
,
D. K.
, and
Najjar
,
F. M.
,
1997
, “
Heat Transfer Enhancement Mechanisms in Inline and Staggered Parallel-Plate Fin Heat Exchangers
,”
Int. J. Heat Mass Transfer
,
40
(
10
), pp.
2307
2325
.10.1016/S0017-9310(96)00303-1
28.
Mahmood
,
G. I.
,
Hill
,
M. L.
,
Nelson
,
D. L.
,
Ligrani
,
P. M.
,
Moon
,
H. K.
, and
Glezer
,
B.
,
2001
, “
Local Heat Transfer and Flow Structure on and Above a Dimpled Surface in a Channel
,”
ASME J. Turbomach.
,
123
(
1
), pp.
115
123
.10.1115/1.1333694
29.
Lu
,
G.
, and
Zhai
,
X.
,
2019
, “
Analysis on Heat Transfer and Pressure Drop of a Microchannel Heat Sink With Dimples and Vortex Generators
,”
Int. J. Therm. Sci.
,
145
, p.
105986
.10.1016/j.ijthermalsci.2019.105986
30.
EOS
,
2014
, “
Material Data Sheet
,”
EOS
,
Krailling, Germany
.
31.
Photocentric
,
2017
, “
Safety Data Sheet Photocentric 3D Resin (Pro Hard)
,”
Photocentric
,
Peterborough, UK
.
32.
Zygo
,
2018
, “NexView,”
Zygo
,
Middlefield, CT
.
33.
Fox
,
J. C.
,
Moylan
,
S. P.
, and
Lane
,
B. M.
,
2016
, “
Effect of Process Parameters on the Surface Roughness of Overhanging Structures in Laser Powder Bed Fusion Additive Manufacturing
,”
Procedia CIRP
,
45
, pp.
131
134
.10.1016/j.procir.2016.02.347
34.
Saltzman
,
D.
,
Bichnevicius
,
M.
,
Lynch
,
S.
,
Simpson
,
T. W.
,
Reutzel
,
E. W.
,
Dickman
,
C.
, and
Martukanitz
,
R.
,
2018
, “
Design and Evaluation of an Additively Manufactured Aircraft Heat Exchanger
,”
Appl. Therm. Eng.
,
138
, pp.
254
263
.10.1016/j.applthermaleng.2018.04.032
35.
Atzeni
,
E.
,
Barletta
,
M.
,
Calignano
,
F.
,
Iuliano
,
L.
,
Rubino
,
G.
, and
Tagliaferri
,
V.
,
2016
, “
Abrasive Fluidized Bed (AFB) Finishing of AlSi10 Mg Substrates Manufactured by Direct Metal Laser Sintering (DMLS)
,”
Addit. Manuf.
,
10
, pp.
15
23
.10.1016/j.addma.2016.01.005
36.
Furumoto
,
T.
,
Ueda
,
T.
,
Amino
,
T.
, and
Hosokawa
,
A.
,
2011
, “
A Study of Internal Face Finishing of the Cooling Channel in Injection Mold With Free Abrasive Grains
,”
J. Mater. Process. Technol.
,
211
(
11
), pp.
1742
1748
.10.1016/j.jmatprotec.2011.05.018
37.
Peng
,
C.
,
Fu
,
Y.
,
Wei
,
H.
,
Li
,
S.
,
Wang
,
X.
, and
Gao
,
H.
,
2018
, “
Study on Improvement of Surface Roughness and Induced Residual Stress for Additively Manufactured Metal Parts by Abrasive Flow Machining
,”
Procedia CIRP
,
71
, pp.
386
389
.10.1016/j.procir.2018.05.046
38.
Mochizuki
,
S.
,
Yagi
,
Y.
, and
Yang
,
W.-J.
,
1987
, “
Transport Phenomena in Stacks of Interrupted Parallel-Plate Surfaces
,”
Exp. Heat Transfer
,
1
(
2
), pp.
127
140
.10.1080/08916158708946336
39.
Jahanmir
,
J.
, and
Wyant
,
J. C.
,
1992
, “
Comparison of Surface Roughness Measured With an Optical Profiler and a Scanning Probe Microscope
,”
Proc. SPIE
1720
, pp.
111
118
.10.1117/12.132117
40.
Pakkanen
,
J.
,
Calignano
,
F.
,
Trevisan
,
F.
,
Lorusso
,
M.
,
Ambrosio
,
E. P.
,
Manfredi
,
D.
, and
Fino
,
P.
,
2016
, “
Study of Internal Channel Surface Roughnesses Manufactured by Selective Laser Melting in Aluminum and Titanium Alloys
,”
Metall. Mater. Trans. A
,
47
(
8
), pp.
3837
3844
.10.1007/s11661-016-3478-7
41.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.10.1016/0894-1777(88)90043-X
42.
Norberg
,
C.
,
1998
, “
LDV-Measurements in the Near Wake of a Circular Cylinder Experimental Details
,”
Advances in the Understanding of Bluff Body Wakes and Vortex-Induced Vibration
,
Washington, DC
, pp.
1
12
.
You do not currently have access to this content.