Abstract

The present investigation elucidates the interfacial characterization caused by the simultaneous effect of a symmetric converging rotational field and continuous air stream flow above the free surface. The converging rotational field is developed by a couple of counter and equal rotating rollers fully immersed inside the viscous liquid medium and their centers are aligned along a horizontal line. Such phenomenon is abundantly encountered in various engineering devices, where the interactions and transfer of mass, momentum, and energy are quite important through gas–liquid interfaces. Behavior of entrainment profile is observed due to the influence of various relevant pertinent parameters, namely, rotational of speed (measured by Ca), submersion depth (b*), the gap between the rollers (2a*), and strength of air stream flow (measured by Reflow). An upper rounded structured interfacial configuration is obtained for all cases of Ca when the rollers are located very close to each other. The length of the entrainment of cusp decreases with the rise of Reflow for the same value of Ca. The value of Cac increases continuously with the increase of Reflow for a particular of 2a* and b*. Bubble ejection from filament tip and subsequent accumulation increases significantly with the rise of Ca for a particular case of Reflow. The cusp tip progressively traverses in upward direction with the continuous increase of gravitational pull for a particular value of Ca and Reflow. Entrainment length progressively grows with the continuous rise of viscous drag for a particular value of Ca and Reflow. Finally, an analytical formulation is proposed to analyze the structure of entrainment and this model reports an excellent match with the numerical findings.

References

1.
Singh
,
S.
, and
Musculus
,
M. P.
,
2010
, “
Numerical Modeling and Analysis of Entrainment in Turbulent Jets After the End of Injection
,”
ASME J. Fluids Eng.
,
132
(
8
), p.
081203
.10.1115/1.4002184
2.
Deike
,
L.
,
Melville
,
W. K.
, and
Popinet
,
S.
,
2016
, “
Air Entrainment and Bubble Statistics in Breaking Waves
,”
J. Fluid Mech.
,
801
, pp.
91
129
.10.1017/jfm.2016.372
3.
Bertola
,
N.
,
Wang
,
H.
, and
Chanson
,
H.
,
2018
, “
Air Bubble Entrainment, Breakup, and Interplay in Vertical Plunging Jets
,”
ASME J. Fluids Eng.
,
140
(
9
), p.
091301
.10.1115/1.4039715
4.
Rana
,
B. K.
,
Das
,
A. K.
, and
Das
,
P. K.
,
2016
, “
Asymmetric Bursting of Taylor Bubble in Inclined Tubes
,”
Phys. Fluids
,
28
(
8
), p.
082106
.10.1063/1.4961040
5.
Bowden
,
R. C.
, and
Hassan
,
I. G.
,
2012
, “
Modeling the Onset of Gas Entrainment in a Reduced T-Junction With Co-Current Stratified Gas-Liquid Flow
,”
ASME J. Fluids Eng.
,
134
(
8
), p.
081303
.10.1115/1.4003854
6.
Rana
,
B. K.
,
Das
,
A. K.
, and
Das
,
P. K.
,
2017
, “
Study of Interaction Pattern Between Bubbles at Three Inline Orifices in a Submerged Pool
,”
Chem. Eng. Sci.
,
168
, pp.
41
54
.10.1016/j.ces.2017.04.044
7.
Campbell
,
J.
,
2006
, “
Entrainment Defects
,”
Mater. Sci. Technol.
,
22
(
2
), pp.
127
145
.10.1179/174328406X74248
8.
Carrillo Ibañez
,
W. A.
,
Demétrio
,
M. J.
,
Oliveira
,
A. A.
, and
Pereira
,
F. M.
,
2021
, “
Pressure Drop, Air Entrainment, and Moments of the Axial Velocity in the Laminar-Turbulent Transition Jet Flow in Domestic Gas Injectors
,”
ASME J. Fluids Eng.
,
143
(
7
), p.
071203
.10.1115/1.4050515
9.
Rutschmann
,
P.
, and
Hager
,
W. H.
,
1990
, “
Air Entrainment by Spillway Aerators
,”
J. Hydraul. Eng.
,
116
(
6
), pp.
765
782
.10.1061/(ASCE)0733-9429(1990)116:6(765)
10.
Rana
,
B. K.
,
Das
,
A. K.
, and
Das
,
P. K.
,
2017
, “
Towards the Understanding of Bubble-Bubble Interaction Upon Formation at Submerged Orifices: A Numerical Approach
,”
Chem. Eng. Sci.
,
161
, pp.
316
328
.10.1016/j.ces.2016.12.049
11.
Rana
,
B. K.
,
Das
,
A. K.
, and
Das
,
P. K.
,
2015
, “
Mechanism of Bursting Taylor Bubbles at Free Surfaces
,”
Langmuir
,
31
(
36
), pp.
9870
9881
.10.1021/acs.langmuir.5b02643
12.
Neumann
,
M.
,
Schäfer
,
T.
,
Bieberle
,
A.
, and
Hampel
,
U.
,
2016
, “
An Experimental Study on the Gas Entrainment in Horizontally and Vertically Installed Centrifugal Pumps
,”
ASME J. Fluids Eng.
,
138
(
9
), p.
091301
.10.1115/1.4033029
13.
Hyun Im
,
J.
, and
Jin Song
,
S.
,
2015
, “
Mixing and Entrainment Characteristics in Circular Short Ejectors
,”
ASME J. Fluids Eng.
,
137
(
5
), p.
051103
.10.1115/1.4029412
14.
Dabiri
,
J. O.
, and
Gharib
,
M.
,
2004
, “
Fluid Entrainment by Isolated Vortex Rings
,”
J. Fluid Mech.
,
511
, pp.
311
331
.10.1017/S0022112004009784
15.
Bowden
,
R. C.
, and
Hassan
,
I. G.
,
2009
, “
Modeling the Onset of Gas Entrainment in a Single Downward Discharge From a Stratified Gas-Liquid Region With Liquid Crossflow
,”
ASME J. Fluids Eng.
,
131
(
3
), p.
031304
.10.1115/1.3059586
16.
Durve
,
A. P.
, and
Patwardhan
,
A. W.
,
2012
, “
Numerical and Experimental Investigation of Onset of Gas Entrainment Phenomenon
,”
Chem. Eng. Sci.
,
73
, pp.
140
150
.10.1016/j.ces.2012.01.030
17.
Sharma
,
Y.
,
Kumar
,
P.
,
Rana
,
B. K.
, and
Das
,
A. K.
,
2016
, “
Rotary Entrainment in Stratified Gas-Liquid Layers: An Experimental Study
,”
Proc. Ind. Natl. Sci. Acad.
,
82
(
4
), pp.
1293
1301
.10.16943/ptinsa/2016/v82/48401
18.
Panda
,
S. K.
, and
Rana
,
B. K.
,
2022
, “
Rotational Flux Influenced Cusp Entrainment in a Viscous Pool
,”
Phys. Fluids
,
34
(
10
), p.
102103
.10.1063/5.0118237
19.
Peixinho
,
J.
,
Mirbod
,
P.
, and
Morris
,
J. F.
,
2012
, “
Free Surface Flow Between Two Horizontal Concentric Cylinders
,”
Eur. Phys. J. E
,
35
(
3
), pp.
1
9
.10.1140/epje/i2012-12019-8
20.
Rana
,
B. K.
,
Das
,
A. K.
, and
Das
,
P. K.
,
2016
, “
Numerical Study of Air Entrainment and Liquid Film Wrapping Around a Rotating Cylinder
,”
Ind. Eng. Chem. Res.
,
55
(
46
), pp.
11950
11960
.10.1021/acs.iecr.6b03477
21.
Peters
,
I. R.
,
Madonia
,
M.
,
Lohse
,
D.
, and
van der Meer
,
D.
,
2016
, “
Volume Entrained in the Wake of a Disk Intruding Into an Oil-Water Interface
,”
Phys. Rev. Fluids
,
1
(
3
), p.
033901
.10.1103/PhysRevFluids.1.033901
22.
Kumar
,
P.
,
Das
,
A. K.
, and
Mitra
,
S. K.
,
2017
, “
Air Entrainment Driven by a Converging Rotational Field in a Viscous Liquid
,”
Phys. Fluids
,
29
(
10
), p.
102104
.10.1063/1.4991763
23.
Kumar
,
P.
,
Das
,
A. K.
, and
Mitra
,
S. K.
,
2017
, “
Bending and Growth of Entrained Air Filament Under Converging and Asymmetric Rotational Fields
,”
Phys. Fluids
,
29
(
2
), p.
022101
.10.1063/1.4975211
24.
Kumar
,
P.
,
Prajapati
,
M.
,
Das
,
A. K.
, and
Mitra
,
S. K.
,
2018
, “
Vortex Formation and Subsequent Air Entrainment Inside a Liquid Pool
,”
Ind. Eng. Chem. Res.
,
57
(
18
), pp.
6538
6552
.10.1021/acs.iecr.8b00379
25.
Prajapati
,
M.
,
Kumar
,
P.
,
Das
,
A. K.
, and
Mitra
,
S. K.
,
2020
, “
Numerical Understanding of Free Surface Vortex Driven by Rotational Field Inside Viscous Liquid
,”
Heat Transfer Eng.
,
41
(
15–16
), pp.
1382
1396
.10.1080/01457632.2019.1628486
26.
Kim
,
D.
, and
Kim
,
D.
,
2021
, “
Free-Surface Vortex Formation and Aeration by a Submerged Rotating Disk
,”
Chem. Eng. Sci.
,
243
, p.
116787
.10.1016/j.ces.2021.116787
27.
Benkreira
,
H.
,
Edwards
,
M. F.
, and
Wilkinson
,
W. L.
,
1981
, “
Roll Coating of Purely Viscous Liquids
,”
Chem. Eng. Sci.
,
36
(
2
), pp.
429
434
.10.1016/0009-2509(81)85025-7
28.
Jeong
,
J. T.
, and
Moffatt
,
H. K.
,
1992
, “
Free-Surface Cusps Associated With Flow at Low Reynolds Number
,”
J. Fluid Mech.
,
241
, pp.
1
22
.10.1017/S0022112092001927
29.
Lorenceau
,
E.
,
Restagno
,
F.
, and
Quéré
,
D.
,
2003
, “
Fracture of a Viscous Liquid
,”
Phys. Rev. Lett.
,
90
(
18
), p.
184501
.10.1103/PhysRevLett.90.184501
30.
Tharmalingam
,
S.
, and
Wilkinson
,
W. L.
,
1978
, “
The Coating of Newtonian Liquids Onto a Rotating Roll
,”
Chem. Eng. Sci.
,
33
(
11
), pp.
1481
1487
.10.1016/0009-2509(78)85197-5
31.
Bolton
,
B.
, and
Middleman
,
S.
,
1980
, “
Air Entrainment in a Roll Coating System
,”
Chem. Eng. Sci.
,
35
(
3
), pp.
597
601
.10.1016/0009-2509(80)80008-X
32.
Yu
,
S. H.
,
Lee
,
K. S.
, and
Yook
,
S. J.
,
2009
, “
Film Flow Around a Fast Rotating Roller
,”
Int. J. Heat Fluid Flow
,
30
(
4
), pp.
796
803
.10.1016/j.ijheatfluidflow.2009.01.013
33.
Panda
,
S. K.
,
Rana
,
B. K.
, and
Kumar
,
P.
,
2021
, “
Competition of Roller Rotation and Horizontal Crossflow to Control the Free Surface Cusp-Induced Air Entrainment
,”
Phys. Fluids
,
33
(
11
), p.
112114
.10.1063/5.0069984
34.
Panda
,
S. K.
, and
Rana
,
B. K.
,
2022
, “
Numerical Simulation and Analytical Prediction on the Development of Entrained Air Filament Caused by the Combined Effect of Rotational Field and Freestream Flow
,”
Ind. Eng. Chem. Res.
,
61
(
26
), pp.
9456
9473
.10.1021/acs.iecr.2c00684
35.
Tharmalingam
,
S.
, and
Wilkinson
,
W. L.
,
1978
, “
The Coating of Newtonian Liquids Onto a Roll Rotating at Low Speeds
,”
Polym. Eng. Sci.
,
18
(
15
), pp.
1155
1159
.10.1002/pen.760181506
36.
Middleman
,
S.
,
1978
, “
Free Coating of Viscous and Viscoelastic Liquids Onto a Partially Submerged Rotating Roll
,”
Polym. Eng. Sci.
,
18
(
9
), pp.
734
737
.10.1002/pen.760180909
37.
Shul'Man
,
Z. P.
, and
Baikov
,
V. I.
,
1981
, “
Entrainment of a Viscoplastic Fluid by a Rotating Drum
,”
J. Eng. Phys.
,
40
(
6
), pp.
605
608
.10.1007/BF00825446
38.
Campanella
,
O. H.
, and
Cerro
,
R. L.
,
1984
, “
Viscous Flow on the Outside of a Horizontal Rotating Cylinder: The Roll Coating Regime With a Single Fluid
,”
Chem. Eng. Sci.
,
39
(
10
), pp.
1443
1449
.10.1016/0009-2509(84)80002-0
39.
Joseph
,
D. D.
,
Nguyen
,
K.
, and
Beavers
,
G. S.
,
1984
, “
Non-Uniqueness and Stability of the Configuration of Flow of Immiscible Fluids With Different Viscosities
,”
J. Fluid Mech.
,
141
, pp.
319
345
.10.1017/S0022112084000872
40.
Joseph
,
D. D.
,
Nelson
,
J.
,
Renardy
,
M.
, and
Renardy
,
Y.
,
1991
, “
Two-Dimensional Cusped Interfaces
,”
J. Fluid Mech.
,
223
(
-1
), pp.
383
409
.10.1017/S0022112091001477
41.
Ren
,
H.
,
Xu
,
Y.
,
Zhang
,
M.
,
Deng
,
S.
,
Li
,
S.
,
Fu
,
S.
, and
Sun
,
H.
,
2019
, “
Hydrodynamic Forces on a Partially Submerged Cylinder at High Reynolds Number in a Steady Flow
,”
Appl. Ocean Res.
,
88
, pp.
160
169
.10.1016/j.apor.2019.04.025
42.
Panda
,
S. K.
,
Rana
,
B. K.
, and
Kumar
,
P.
,
2022
, “
Entrainment in Multifluid Systems, and Rotation Induced Occurrences
,”
Eur. J. Mech.-B/Fluids
,
96
, pp.
156
172
.10.1016/j.euromechflu.2022.08.001
43.
Popinet
,
S.
,
2003
, “
Gerris: A Tree-Based Adaptive Solver for the Incompressible Euler Equations in Complex Geometries
,”
J. Comput. Phys.
,
190
(
2
), pp.
572
600
.10.1016/S0021-9991(03)00298-5
44.
Popinet
,
S.
,
2009
, “
An Accurate Adaptive Solver for Surface-Tension-Driven Interfacial Flows
,”
J. Comput. Phys.
,
228
(
16
), pp.
5838
5866
.10.1016/j.jcp.2009.04.042
45.
Chorin
,
A. J.
,
1969
, “
On the Convergence of Discrete Approximations to the Navier-Stokes Equations
,”
Math. Comput.
,
23
(
106
), pp.
341
353
.10.1090/S0025-5718-1969-0242393-5
46.
Bell
,
J. B.
,
Colella
,
P.
, and
Glaz
,
H. M.
,
1989
, “
A Second-Order Projection Method for the Incompressible Navier-Stokes Equations
,”
J. Comput. Phys.
,
85
(
2
), pp.
257
283
.10.1016/0021-9991(89)90151-4
You do not currently have access to this content.