Abstract

Computational fluid dynamics (CFD) has been widely used to predict and understand cardiovascular flows. However, the accuracy of CFD predictions depends on faithful reconstruction of patient vascular anatomy and accurate patient-specific inlet and outlet boundary conditions. 4-Dimensional magnetic resonance imaging (4D MRI) can provide patient-specific data to obtain the required geometry and time-dependent flow boundary conditions for CFD simulations, and can further be used to validate CFD predictions. This work presents a framework to combine both spatiotemporal 4D MRI data and patient monitoring data with CFD simulation workflows. To assist practitioners, all aspects of the modeling workflow, from geometry reconstruction to results postprocessing, are illustrated and compared using three software packages (ansys, comsol, SimVascular) to predict hemodynamics in the thoracic aorta. A sensitivity analysis with respect to inlet boundary condition is presented. Results highlight the importance of 4D MRI data for improving the accuracy of flow predictions on the ascending aorta and the aortic arch. In contrast, simulation results for the descending aorta are less sensitive to the patient-specific inlet boundary conditions.

References

1.
Clouse
,
W. D.
,
John
,
W.
,
Hallett
,
J. R.
,
Schaff
,
H. V.
,
Gayari
,
M. M.
,
Ilstrup
,
D. M.
, and
Melton
, III
J. O.
,
1999
, “
Improved Prognosis of Thoracic Aortic Aneurysms: A Population-Based Study
,”
Surv. Anesthesiol.
,
43
(
4
), pp.
198
199
.10.1097/00132586-199908000-00011
2.
Bakhshinejad
,
A.
,
Baghaie
,
A.
,
Vali
,
A.
,
Saloner
,
D.
,
Rayz
,
V. L.
, and
D'Souza
,
R. M.
,
2017
, “
Merging Computational Fluid Dynamics and 4D Flow MRI Using Proper Orthogonal Decomposition and Ridge Regression
,”
J. Biomech.
,
58
, pp.
162
73
.10.1016/j.jbiomech.2017.05.004
3.
Guala
,
A.
,
Dux-Santoy
,
L.
,
Teixido-Tura
,
G.
,
Ruiz-Muñoz
,
A.
,
Galian-Gay
,
L.
,
Servato
,
M. L.
,
Valente
,
F.
,
Gutiérrez
,
L.
,
González-Alujas
,
T.
,
Johnson
,
K. M.
, and
Wieben
,
O.
,
2022
, “
Wall Shear Stress Predicts Aortic Dilation in Patients With Bicuspid Aortic Valve
,”
Cardiovasc. Imag.
,
15
(
1
), pp.
46
56
.10.1016/j.jcmg.2021.09.023
4.
Ferdian
,
E.
,
Suinesiaputra
,
A.
,
Dubowitz
,
D. J.
,
Zhao
,
D.
,
Wang
,
A.
,
Cowan
,
B.
, and
Young
,
A. A.
,
2020
, “
4DFlowNet: Super-Resolution 4D Flow MRI Using Deep Learning and Computational Fluid Dynamics
,”
Front. Phys.
,
8
, p.
138
.10.3389/fphy.2020.00138
5.
Jayendiran
,
R.
,
Condemi
,
F.
,
Campisi
,
S.
,
Viallon
,
M.
,
Croisille
,
P.
, and
Avril
,
S.
,
2020
, “
Computational Prediction of Hemodynamical and Biomechanical Alterations Induced by Aneurysm Dilatation in Patient‐Specific Ascending Thoracic Aortas
,”
Int. J. Numer. Methods Biomed. Eng.
,
36
(
6
), p.
e3326
.10.1002/cnm.3326
6.
Di Nardo
,
A.
,
Louvelle
,
L.
,
Romero
,
D. A.
,
Doyle
,
M.
,
Forbes
,
T. L.
, and
Amon
,
C. H.
,
2023
, “
A Comparison of Vessel Patch Materials in Tetralogy of Fallot Patients Using Virtual Surgery Techniques
,”
Ann. Biomed. Eng.
, pp.
1
6
.10.1007/s10439-023-03144-x
7.
Tajeddini
,
F.
,
Firoozabadi
,
B.
,
Pakravan
,
H. A.
, and
Tafti
,
S. H.
,
2022
, “
Patient-Specific Fluid–Structure Interaction Simulation of the LAD-ITA Bypass Graft for Moderate and Severe Stenosis: A Doubt on the Fractional Flow Reserve-Based Decision
,”
Biocybern. Biomed. Eng.
,
42
(
1
), pp.
143
157
.10.1016/j.bbe.2021.12.003
8.
Louvelle
,
L.
,
Doyle
,
M.
,
Van Arsdell
,
G.
, and
Amon
,
C.
,
2021
, “
The Effect of Geometric and Hemodynamic Parameters on Blood Flow Efficiency in Repaired Tetralogy of Fallot Patients
,”
Ann. Biomed. Eng.
,
49
, pp.
2297
2310
.10.1007/s10439-021-02771-6
9.
Williams
,
J. G.
,
Marlevi
,
D.
,
Bruse
,
J. L.
,
Nezami
,
F. R.
,
Moradi
,
H.
,
Fortunato
,
R. N.
,
Maiti
,
S.
,
Billaud
,
M.
,
Edelman
,
E. R.
, and
Gleason
,
T. G.
,
2022
, “
Aortic Dissection is Determined by Specific Shape and Hemodynamic Interactions
,”
Ann. Biomed. Eng.
,
9
, pp.
1
6
.10.1007/s10439-022-02979-0
10.
Moradi
,
H.
,
Al-Hourani
,
A.
,
Concilia
,
G.
,
Khoshmanesh
,
F.
,
Nezami
,
F. R.
,
Needham
,
S.
,
Baratchi
,
S.
, and
Khoshmanesh
,
K.
,
2023
, “
Recent Developments in Modeling, Imaging, and Monitoring of Cardiovascular Diseases Using Machine Learning
,”
Biophys. Rev.
,
10
, pp.
1
5
.10.1007/s12551-022-01040-7
11.
Itatani
,
K.
,
Miyazaki
,
S.
,
Furusawa
,
T.
,
Numata
,
S.
,
Yamazaki
,
S.
,
Morimoto
,
K.
,
Makino
,
R.
,
Morichi
,
H.
,
Nishino
,
T.
, and
Yaku
,
H.
,
2017
, “
New Imaging Tools in Cardiovascular Medicine: Computational Fluid Dynamics and 4D Flow MRI
,”
Gen. Thoraci. Cardiovasc. Surg.
,
65
(
11
), pp.
611
621
.10.1007/s11748-017-0834-5
12.
Nannini
,
G.
,
Caimi
,
A.
,
Palumbo
,
M. C.
,
Saitta
,
S.
,
Girardi
,
L. N.
,
Gaudino
,
M.
,
Roman
,
M. J.
,
Weinsaft
,
J. W.
, and
Redaelli
,
A.
,
2021
, “
Aortic Hemodynamics Assessment Prior and After Valve Sparing Reconstruction: A Patient-Specific 4D Flow-Based FSI Model
,”
Comput. Biol. Med.
,
135
, p.
104581
.10.1016/j.compbiomed.2021.104581
13.
McClarty
,
D.
,
Ouzounian
,
M.
,
Tang
,
M.
,
Eliathamby
,
D.
,
Romero
,
D.
,
Nguyen
,
E.
,
Simmons
,
C. A.
,
Amon
,
C. H.
, and
Chung
,
J. C.
,
2022
, “
Ascending Aortic Aneurysm Haemodynamics Are Associated With Aortic Wall Biomechanical Properties
,”
Eur. J. Cardio-Thorac. Surg.
,
61
(
2
), pp.
367
375
.10.1093/ejcts/ezab471
14.
Boccadifuoco
,
A.
,
Mariotti
,
A.
,
Capellini
,
K.
,
Celi
,
S.
, and
Salvetti
,
M. V.
,
2018
, “
Validation of Numerical Simulations of Thoracic Aorta Hemodynamics: Comparison With In Vivo Measurements and Stochastic Sensitivity Analysis
,”
Cardiovasc. Eng. Technol.
,
9
(
4
), pp.
688
706
.10.1007/s13239-018-00387-x
15.
Armour
,
C. H.
,
Guo
,
B.
,
Pirola
,
S.
,
Saitta
,
S.
,
Liu
,
Y.
,
Dong
,
Z.
, and
Xu
,
X. Y.
,
2021
, “
The Influence of Inlet Velocity Profile on Predicted Flow in Type B Aortic Dissection
,”
Biomech. Model. Mechanobiol.
,
20
(
2
), pp.
481
90
.10.1007/s10237-020-01395-4
16.
Ngo
,
M. T.
,
Kim
,
C. I.
,
Jung
,
J.
,
Chung
,
G. H.
,
Lee
,
D. H.
, and
Kwak
,
H. S.
,
2019
, “
Four-Dimensional Flow Magnetic Resonance Imaging for Assessment of Velocity Magnitudes and Flow Patterns in the Human Carotid Artery Bifurcation: Comparison With Computational Fluid Dynamics
,”
Diagnostics
,
9
(
4
), p.
223
.10.3390/diagnostics9040223
17.
Updegrove
,
A.
,
Wilson
,
N. M.
,
Merkow
,
J.
,
Lan
,
H.
,
Marsden
,
A. L.
, and
Shadden
,
S. C.
,
2017
, “
SimVascular: An Open Source Pipeline for Cardiovascular Simulation
,”
Ann. Biomed. Eng.
,
45
(
3
), pp.
525
41
.10.1007/s10439-016-1762-8
18.
Ansys
, 2019,
Ansys® Academic Research Fluent, Release 19.2
, Canonsburg, PA.
19.
COMSOL
, 2020,
COMSOL Multiphysics® v. 5.6
,
COMSOL AB
,
Stockholm, Sweden
.
20.
Youssefi
,
P.
,
Gomez
,
A.
,
Arthurs
,
C.
,
Sharma
,
R.
,
Jahangiri
,
M.
, and
Alberto Figueroa
,
C.
,
2018
, “
Impact of Patient-Specific Inflow Velocity Profile on Hemodynamics of the Thoracic Aorta
,”
ASME J. Biomech. Eng.
,
140
(
1
), p. 011002.10.1115/1.4037857
21.
Yushkevich
,
P. A.
,
Piven
,
J.
,
Hazlett
,
H. C.
,
Smith
,
R. G.
,
Ho
,
S.
,
Gee
,
J. C.
, and
Gerig
,
G.
,
2006
, “
User-Guided 3D Active Contour Segmentation of Anatomical Structures: Significantly Improved Efficiency and Reliability
,”
Neuroimage
,
31
(
3
), pp.
1116
1128
.10.1016/j.neuroimage.2006.01.015
22.
Autodesk Inc., 2015, “Autodesk MeshMixer (RRID:SCR_015736),” Autodesk Inc.,San Rafael, CA.
23.
Cignoni
,
P.
,
Callieri
,
M.
,
Corsini
,
M.
,
Dellepiane
,
M.
,
Ganovelli
,
F.
, and
Ranzuglia
,
G.
,
2008
, “
Meshlab: An Open-Source Mesh Processing Tool
,”
Eurographics Italian Chapter Conference
, Salerno, Italy, Jul 2, Vol.
2008
, pp.
129
136
.
24.
Liu
,
D.
,
Wang
,
X.
,
Zhao
,
D.
,
Sun
,
Z.
,
Biekan
,
J.
,
Wen
,
Z.
,
Xu
,
L.
, and
Liu
,
J.
,
2022
, “
Influence of MRI-Based Boundary Conditions on Type B Aortic Dissection Simulations in False Lumen With or Without Abdominal Aorta Involvement
,”
Front. Physiol.
,
13
, p.
977275
.10.3389/fphys.2022.977275
25.
Perinajová
,
R.
,
Juffermans
,
J. F.
,
Westenberg
,
J. J.
,
van der Palen
,
R. L.
,
van den Boogaard
,
P. J.
,
Lamb
,
H. J.
, and
Kenjereš
,
S.
,
2021
, “
Geometrically Induced Wall Shear Stress Variability in CFD-MRI Coupled Simulations of Blood Flow in the Thoracic Aortas
,”
Comput. Biol. Med.
,
133
, p.
104385
.10.1016/j.compbiomed.2021.104385
26.
Nico Schlömer et al., 2020, “
Meshio
5.3.4. PyPI. [cited 2022May13], MIT License (MIT),” accessed Mar. 15, 2023, https://pypi.org/project/meshio/
27.
Abazari
,
M. A.
,
Rafieianzab
,
D.
,
Soltani
,
M.
, and
Alimohammadi
,
M.
,
2021
, “
The Effect of Beta-Blockers on Hemodynamic Parameters in Patient-Specific Blood Flow Simulations of type-B Aortic Dissection: A Virtual Study
,”
Sci. Rep.
,
11
(
1
), pp.
1
4
.10.1038/s41598-021-95315-w
28.
Ahrens
,
J.
,
Geveci
,
B.
, and
Law
,
C.
,
2005
, “Paraview: An End-User Tool for Large Data Visualization, Visualization Handbook,” Elsevier, Amsterdam, The Netherlands.
29.
Simpson
,
J. P.
, and
Leylek
,
J. H.
,
2022
, “
The Influence of Womersley Number on Non-Newtonian Effects: Transient Computational Study of Blood Rheology
,”
ASME J. Fluids Eng.
, 145(1), p. 011206.10.1115/1.4055400
30.
Simpson
,
J. P.
, and
Leylek
,
J.
,
2022
, “
Analysis of Helical Grafts in Steady and Unsteady Flow: Development of a Novel Bypass Graft
,”
ASME J. Fluids Eng.
, 145(1), p. 011205.10.1115/1.4055399
31.
Manchester
,
E. L.
,
Pirola
,
S.
,
Salmasi
,
M. Y.
,
O'Regan
,
D. P.
,
Athanasiou
,
T.
, and
Xu
,
X. Y.
,
2022
, “
Evaluation of Computational Methodologies for Accurate Prediction of Wall Shear Stress and Turbulence Parameters in a Patient-Specific Aorta
,”
Front. Bioeng. Biotechnol.
,
10
, p. 836611.10.3389/fbioe.2022.836611
32.
Tajeddini
,
F.
,
Nikmaneshi
,
M. R.
,
Firoozabadi
,
B.
, and
Pakravan
,
H. A.
, “
Numerical Comparison Between Reliability of Instantaneous Wave-Free Ratio (iFR) and Fractional Flow Reserve (FFR) in Diagnosis Severity of Stenosis in Coronary Arteries
,”
27th Annual International Conference on Mechanical Engineering ISME2019
, Tehran, Iran, Paper No. ISME27_742.
33.
Tajeddini
,
F.
,
Romero Torres
,
D. A.
,
McClarty
,
D.
,
Chung
,
J.
, and
Amon
,
C. H.
,
2022
, “
Combining 4D MRI With CFD for Investigating Patient-Specific Cardiovascular Flows: A Comprehensive Comparison of ANSYS., COMSOL., and SimVascular Illustrated With the Prediction of Thoracic Aortic Hemodynamics
,”
ASME
Paper No. FEDSM2022-87596.10.1115/FEDSM2022-87596
34.
Kim
,
H. J.
,
Vignon-Clementel
,
I. E.
,
Coogan
,
J. S.
,
Figueroa
,
C. A.
,
Jansen
,
K. E.
, and
Taylor
,
C. A.
,
2010
, “
Patient-Specific Modeling of Blood Flow and Pressure in Human Coronary Arteries
,”
Ann. Biomed. Eng.
,
38
(
10
), pp.
3195
3209
.10.1007/s10439-010-0083-6
35.
Mousavi
,
S. J.
,
Jayendiran
,
R.
,
Farzaneh
,
S.
,
Campisi
,
S.
,
Viallon
,
M.
,
Croisille
,
P.
, and
Avril
,
S.
,
2021
, “
Coupling Hemodynamics With Mechanobiology in Patient-Specific Computational Models of Ascending Thoracic Aortic Aneurysms
,”
Comput. Methods Programs Biomed.
,
205
, p.
106107
.10.1016/j.cmpb.2021.106107
36.
Munshi
,
B.
,
Parker
,
L. P.
,
Norman
,
P. E.
, and
Doyle
,
B. J.
,
2020
, “
The Application of Computational Modeling for Risk Prediction in Type B Aortic Dissection
,”
J. Vasc. Surg.
,
71
(
5
), pp.
1789
1801
.10.1016/j.jvs.2019.09.032
37.
Moshfegh
,
H.
,
Tajeddini
,
F.
,
Pakravan
,
H. A.
,
Mahzoon
,
M.
,
Yazdi
,
E. A.
, and
Drissi
,
H. B.
,
2021
, “
A Validated Reduced-Order Dynamic Model of Nitric Oxide Regulation in Coronary Arteries
,”
Comput. Biol. Med.
,
139
, p.
104958
.10.1016/j.compbiomed.2021.104958
38.
Pirola
,
S.
,
Cheng
,
Z.
,
Jarral
,
O. A.
,
O'Regan
,
D. P.
,
Pepper
,
J. R.
,
Athanasiou
,
T.
, and
Xu
,
X. Y.
,
2017
, “
On the Choice of Outlet Boundary Conditions for Patient-Specific Analysis of Aortic Flow Using Computational Fluid Dynamics
,”
J. Biomech.
,
60
, pp.
15
21
.10.1016/j.jbiomech.2017.06.005
39.
Li
,
B.
,
Liu
,
T.
,
Liu
,
J.
,
Liu
,
Y.
,
Cao
,
B.
,
Zhao
,
X.
,
Wang
,
W.
,
Shi
,
M.
,
Zhang
,
L.
,
Xu
,
K.
, and
Chen
,
M.
,
2022
, “
Reliability of Using Generic Flow Conditions to Quantify Aneurysmal Haemodynamics: A Comparison Against Simulations Incorporating Boundary Conditions Measured In Vivo
,”
Comput. Methods Programs Biomed.
,
225
, p.
107034
.10.1016/j.cmpb.2022.107034
40.
Groen
,
H. C.
,
Simons
,
L.
,
van den Bouwhuijsen
,
Q. J.
,
Bosboom
,
E. M.
,
Gijsen
,
F. J.
,
van der Giessen
,
A. G.
,
van de Vosse
,
F. N.
,
Hofman
,
A.
,
van der Steen
,
A. F.
,
Witteman
,
J. C.
, and
van der Lugt
,
A.
,
2010
, “
MRI-Based Quantification of Outflow Boundary Conditions for Computational Fluid Dynamics of Stenosed Human Carotid Arteries
,”
J. Biomech.
,
43
(
12
), pp.
2332
2338
.10.1016/j.jbiomech.2010.04.039
41.
Bantwal
,
A.
,
Singh
,
A.
,
Menon
,
A. R.
, and
Kumar
,
N.
,
2022
, “
Hemodynamic Study of Blood Flow in the Carotid Artery With a Focus on Carotid Sinus Using Fluid-Structure Interaction
,”
ASME J. Fluids Eng.
,
144
(
2
), p.
021403
.10.1115/1.4051902
42.
Tajeddini
,
F.
,
Nikmaneshi
,
M. R.
,
Firoozabadi
,
B.
,
Pakravan
,
H. A.
,
Ahmadi Tafti
,
S. H.
, and
Afshin
,
H.
,
2020
, “
High Precision Invasive FFR, Low‐Cost Invasive iFR, or Non‐Invasive CFR?: Optimum Assessment of Coronary Artery Stenosis Based on the Patient‐Specific Computational Models
,”
Int. J. Numer. Methods Biomed. Eng.
,
36
(
10
), p.
e3382
.10.1002/cnm.3382
43.
Khlebnikov
,
R.
, and
Figueroa
,
C. A.
,
2015
, “
Crimson: Towards a Software Environment for Patient-Specific Blood Flow Simulation for Diagnosis and Treatment
,”
Clinical Image-Based Procedures. Translational Research in Medical Imaging: 4th International Workshop
, CLIP 2015, Held in Conjunction With MICCAI 2015, Munich, Germany, Oct. 5, Revised Selected Papers 4 (pp. 10–18),
Springer
,
Cham
, Switzerland, pp.
10
18
.
44.
SimVascular docs [cited 2022Feb23]. Available from: http://simvascular.github.io/docsFlowSolver.html#bctfile
45.
Tran
,
K.
,
Yang
,
W.
,
Marsden
,
A.
, and
Lee
,
J. T.
,
2021
, “
Patient-Specific Computational Flow Modelling for Assessing Hemodynamic Changes Following Fenestrated Endovascular Aneurysm Repair
,”
JVS: Vasc. Sci.
,
2
, pp.
53
69
.10.1016/j.jvssci.2020.11.032
46.
Zhang
,
R.
, and
Zhang
,
Y.
,
2020
, “
Effects of Heart Rate on the Pulsatile Flow Characteristics of a Stenotic Aortic Valve Model: An In Vitro Experimental Study
,”
ASME J. Fluids Eng.
,
142
(
10
), p.
101205
.10.1115/1.4047410
47.
Pirola
,
S.
,
Jarral
,
O. A.
,
O'Regan
,
D. P.
,
Asimakopoulos
,
G.
,
Anderson
,
J. R.
,
Pepper
,
J. R.
,
Athanasiou
,
T.
, and
Xu
,
X. Y.
,
2018
, “
Computational Study of Aortic Hemodynamics for Patients With an Abnormal Aortic Valve: The Importance of Secondary Flow at the Ascending Aorta Inlet
,”
APL Bioeng.
,
2
(
2
), p.
026101
.10.1063/1.5011960
You do not currently have access to this content.