Abstract

Components with internal passages created using some laser-sintering based, additive manufacturing (AM) systems can exhibit anisotropic surface features with an appearance of three-dimensional roughness superimposed on two-dimensional, rib-like features. This paper presents an investigation of flow over roughness representing internal cooling passages printed at different angles to the AM printing plane. A roughness geometry was acquired using an X-ray tomography scan of a direct-metal-laser-sintering (DMLS) created coupon with internal cooling passages. The base surface scan was then used to create four surfaces with notional rib-like features positioned at different angles relative to the spanwise flow direction. The flow resistance of each surface was measured using the roughness internal flow tunnel. The mean flow velocity profiles for the cases with ReDh ≤ 30,000 were characterized using a four-camera, tomographic, and particle tracking system. The results demonstrate roughness orientation effects include (1) reduced bulk flow resistance as the alignment angle from the spanwise direction increases, (2) generated flow in the spanwise direction and increased tunnel flow swirl as the alignment angle increases, and (3) velocity profile changes as the flow migrates away from the rough side of the tunnel to the opposing smooth wall. The particle tracking system also demonstrates that the mean streamwise flow profiles change significantly between the 30 deg and 45 deg roughness orientations. Finally, the equivalent sandgrain roughness measurements for the four surfaces were found to follow the trends predicted using the correlations of Bons (2002, “St and cf Augmentation for Real Turbine Roughness With Elevated Freestream Turbulence,” ASME J. Turbomach., 124(4), pp. 632–644.) and Sigal and Danberg (1990, “New Correlation of Roughness Density Effect on the Turbulent Boundary Layer,” AIAA J., 28(3), pp. 554–556.).

References

1.
Saltzman
,
D.
, and
Lynch
,
S.
,
2021
, “
Flow-Field Measurements in a Metal Additively Manufactured Offset Strip Fin Array Using Laser Doppler Velocimetry
,”
ASME J. Fluids Eng.
,
143
(
4
), p.
041502
.10.1115/1.4049245
2.
Deng
,
Y.
,
Fu
,
L.
,
Liu
,
Y.
,
Jiang
,
X.
,
Cui
,
Y.
, and
Wu
,
D.
,
2022
, “
Investigation on Heat Transfer Characteristics of Rectangular Channels With Internal Rough Surface Naturally Formed by Selective Laser Melting Three-Dimensional Printing
,”
ASME J. Fluids Eng.
,
144
(
11
), p.
111502
.10.1115/1.4054862
3.
Raoufi
,
A.
,
Williams
,
A. D.
,
Metcalfe
,
C.
,
Trudeau
,
P.
,
Brinkerhoff
,
J.
,
Warwaruk
,
L.
, and
Ghaemi
,
S.
,
2024
, “
Comparison of Heat Transfer and Friction in Pipes With Various Internal Roughness
,”
ASME J. Fluids Eng.
,
146
(
6
), p.
061302
.10.1115/1.4064495
4.
Favero
,
G.
,
Bonesso
,
M.
,
Rebesan
,
P.
,
Dima
,
R.
,
Pepato
,
A.
, and
Mancin
,
S.
,
2021
, “
Additive Manufacturing for Thermal Management Applications: From Experimental Results to Numerical Modeling
,”
Int. J. Thermofluids
,
10
, p.
100091
.10.1016/j.ijft.2021.100091
5.
Bons
,
J.
,
Ameri
,
A.
,
Gregory
,
J.
, and
Hossain
,
A.
,
2020
, “
Revolutionizing Turbine Cooling With Micro-Architectures Enabled by Direct Metal Laser Sintering
,”
The Ohio State University
,
Columbus, OH
, Report No.
DOE-OSU-25320.
https://netl.doe.gov/sites/default/files/netl-file/Bons-Track-B.pdf
6.
Furgeson
,
M.
,
Veley
,
E.
,
Yoon
,
C.
,
Gutierrez
,
D.
,
Bogard
,
D.
, and
Thole
,
K.
,
2022
, “
Development and Evaluation of Shaped Film Cooling Holes Designed for Additive Manufacturing
,”
ASME
Paper No. GT2022-83201.10.1115/GT2022-83201
7.
Runyon
,
J.
,
Psomoglou
,
I.
,
Kahraman
,
R.
, and
Jones
,
A.
,
2021
, “
Additive Manufacture and the Gas Turbine Combustor: Challenges and Opportunities to Enable Low-Carbon Fuel Flexibility
,”
10th International Gas Turbine Conference: Gas Turbines in a Carbon-Neutral Society
, Brussels, Belgium, Oct. 11–15, pp.
1
16
.https://orca.cardiff.ac.uk/id/eprint/144895
8.
Mooney
,
B.
,
Kourousis
,
K. I.
, and
Raghavendra
,
R.
,
2019
, “
Plastic Anisotropy of Additively Manufactured Maraging Steel: Influence of the Build Orientation and Heat Treatments
,”
Addit. Manuf.
,
25
, pp.
19
31
.10.1016/j.addma.2018.10.032
9.
Miozga
,
R.
, and
Kurek
,
M.
,
2021
, “
Effect of Print Orientation Using DMLS Method on Strength of Materials
,”
MATEC Web of Conferences
, Bydgoszcz, Poland, Feb. 16, p.
01017
.10.1051/matecconf/202133801017
10.
Fotovvati
,
B.
,
Etesami
,
S. A.
, and
Asadi
,
E.
,
2019
, “
Process-Property-Geometry Correlations for Additively-Manufactured Ti–6Al–4V Sheets
,”
Mater. Sci. Eng.: A
,
760
, pp.
431
447
.10.1016/j.msea.2019.06.020
11.
Esmaeilizadeh
,
R.
,
Keshavarzkermani
,
A.
,
Ali
,
U.
,
Mahmoodkhani
,
Y.
,
Behravesh
,
B.
,
Jahed
,
H.
,
Bonakdar
,
A.
, and
Toyserkani
,
E.
,
2020
, “
Customizing Mechanical Properties of Additively Manufactured Hastelloy X Parts by Adjusting Laser Scanning Speed
,”
J. Alloys Compd.
,
812
, p.
152097
.10.1016/j.jallcom.2019.152097
12.
Kuo
,
Y.-L.
,
Horikawa
,
S.
, and
Kakehi
,
K.
,
2017
, “
Effects of Build Direction and Heat Treatment on Creep Properties of Ni-Base Superalloy Built Up by Additive Manufacturing
,”
Scr. Mater.
,
129
, pp.
74
78
.10.1016/j.scriptamat.2016.10.035
13.
Tomus
,
D.
,
Tian
,
Y.
,
Rometsch
,
P. A.
,
Heilmaier
,
M.
, and
Wu
,
X.
,
2016
, “
Influence of Post Heat Treatments on Anisotropy of Mechanical Behaviour and Microstructure of Hastelloy-X Parts Produced by Selective Laser Melting
,”
Mater. Sci. Eng.: A
,
667
, pp.
42
53
.10.1016/j.msea.2016.04.086
14.
Etter
,
T.
,
Kunze
,
K.
,
Geiger
,
F.
, and
Meidani
,
H.
,
2015
, “
Reduction in Mechanical Anisotropy Through High Temperature Heat Treatment of Hastelloy X Processed by Selective Laser Melting (SLM)
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
82
(
1
), p.
012097
.10.1088/1757-899X/82/1/012097
15.
Stafford
,
G.
,
McClain
,
S.
,
Hanson
,
D.
,
Kunz
,
R.
, and
Thole
,
K.
,
2022
, “
Convection in Scaled Turbine Internal Cooling Passages With Additive Manufacturing Roughness
,”
ASME J. Turbomach.
,
144
(
4
), p.
041008
.10.1115/1.4052524
16.
Stimpson
,
C. K.
,
Snyder
,
J.
,
Thole
,
K.
, and
Mongillo
,
D.
,
2016
, “
Roughness Effects on Flow and Heat Transfer for Additively Manufactured Channels
,”
ASME J. Turbomach.
,
138
(
5
), p.
051008
.10.1115/1.4032167
17.
Pérez
,
C.
,
Calvet
,
J.
, and
Sebastián
,
Pérez
,
M.
,
2001
, “
Geometric Roughness Analysis in Solid Free-Form Manufacturing Processes
,”
J. Mater. Process. Technol.
,
119
(
1–3
), pp.
52
57
.10.1016/S0924-0136(01)00897-4
18.
Klingaa
,
C. G.
,
Dahmen
,
T.
,
Baier-Stegmaier
,
S.
,
Mohanty
,
S.
, and
Hattel
,
J. H.
,
2020
, “
Investigation of the Roughness Variation Along the Length of LPBF Manufactured Straight Channels
,”
Nondestr. Test. Eval.
,
35
(
3
), pp.
304
314
.10.1080/10589759.2020.1785445
19.
Klingaa
,
C.
,
Dahmen
,
T.
,
Baier
,
S.
,
Mohanty
,
S.
, and
Hattel
,
J.
,
2020
, “
X-Ray CT and Image Analysis Methodology for Local Roughness Characterization in Cooling Channels Made by Metal Additive Manufacturing
,”
Addit. Manuf.
,
32
, p.
101032
.10.1016/j.addma.2019.101032
20.
Hanson
,
D.
,
McClain
,
S.
,
Snyder
,
J.
,
Kunz
,
R.
, and
Thole
,
K.
,
2019
, “
Flow in a Scaled Turbine Coolant Channel With Roughness Due to Additive Manufacturing
,”
ASME
Paper No. GT2019-90931.10.1115/GT2019-90931
21.
Wildgoose
,
A. J.
,
Thole
,
K. A.
,
Sanders
,
P.
, and
Wang
,
L.
,
2021
, “
Impact of Additive Manufacturing on Internal Cooling Channels With Varying Diameters and Build Directions
,”
ASME J. Turbomach.
,
143
(
7
), p.
071003
.10.1115/1.4050336
22.
Snyder
,
J. C.
,
Stimpson
,
C. K.
,
Thole
,
K. A.
, and
Mongillo
,
D.
,
2016
, “
Build Direction Effects on Additively Manufactured Channels
,”
ASME J. Turbomach.
,
138
(
5
), p.
051006
.10.1115/1.4032168
23.
Hamed
,
A.
,
Kamdar
,
A.
,
Castillo
,
L.
, and
Chamorro
,
L.
,
2015
, “
Turbulent Boundary Layer Over 2D and 3D Large-Scale Wavy Walls
,”
Phys. Fluids
,
27
(
10
), p.
106601
.10.1063/1.4933098
24.
Hamed
,
A.
,
Castillo
,
L.
, and
Chamorro
,
L.
,
2017
, “
Turbulent Boundary Layer Response to Large-Scale Wavy Topographies
,”
Phys. Fluids
,
29
(
6
), p.
065113
.10.1063/1.4989719
25.
Volino
,
R.
,
Schultz
,
M.
, and
Flack
,
K.
,
2011
, “
Turbulence Structure in Boundary Layers Over Periodic Two and Three-Dimensional Roughness
,”
J. Fluid Mech.
,
676
, pp.
172
190
.10.1017/S0022112011000383
26.
Kevin
,
K.
,
Monty
,
J.
, and
Hutchins
,
N.
,
2019
, “
Turbulent Structures in a Statistically Three-Dimensional Boundary Layer
,”
J. Fluid Mech.
,
859
, pp.
543
565
.10.1017/jfm.2018.814
27.
Altland
,
S.
,
Zhu
,
X.
,
McClain
,
S.
,
Kunz
,
R.
, and
Yang
,
X.
,
2022
, “
Flow in Additively Manufactured Super-Rough Channels
,”
Flow
,
2
, p.
E19
.10.1017/flo.2022.13
28.
McClain
,
S.
,
Hanson
,
D.
,
Cinnamon
,
E.
,
Snyder
,
J.
,
Kunz
,
R.
, and
Thole
,
K.
,
2021
, “
Flow in a Simulated Turbine Blade Cooling Channel With Spatially Varying Roughness Caused by Additive Manufacturing Orientation
,”
ASME J. Turbomach.
,
143
(
7
), p.
071013
.10.1115/1.4050389
29.
Busse
,
A.
, and
Jelly
,
T.
,
2020
, “
Influence of Surface Anisotropy on Turbulent Flow Over Irregular Roughness
,”
Flow, Turbul. Combust.
,
104
(
2–3
), pp.
331
354
.10.1007/s10494-019-00074-4
30.
Barros
,
J.
, and
Christensen
,
K.
,
2014
, “
Observations of Turbulent Secondary Flows in a Rough-Wall Boundary Layer
,”
J. Fluid Mech.
,
748
, p.
R1
.10.1017/jfm.2014.218
31.
McClain
,
S.
,
Hodge
,
B.
, and
Bons
,
J.
,
2003
, “
Predicting Skin Friction for Turbulent Flow Over Randomly-Rough Surfaces Using the Discrete-Element Method: Part I—Surface Characterization
,”
ASME
Paper No. FEDSM2003-45411.10.1115/FEDSM2003-45411
32.
Boldt
,
R.
,
McClain
,
S. T.
,
Yang
,
X.
, and
Kunz
,
R. F.
,
2024
, “
Tomographic Flow Measurements Over Additively Manufactured Cooling Channel Roughness
,”
Exp. Fluids
,
65
(
4
), p.
29
.10.1007/s00348-024-03798-w
33.
Altland
,
S.
,
Yang
,
X.
,
Thole
,
K.
,
Kunz
,
R.
, and
McClain
,
S.
,
2023
, “
Application of a Distributed Element Roughness Model to Additively Manufactured Internal Cooling Channels
,”
ASME J. Turbomach.
,
145
(
10
), p.
101004
.10.1115/1.4062838
34.
McClain
,
S.
,
2017
, “
Spanwise Form Extraction for Ice Roughness Measurements From Misaligned Airfoils or Tapered Wings
,”
AIAA
Paper No. 2017-3584.10.2514/6.2017-3584
35.
Coleman
,
H.
, and
Steele
,
W.
,
1999
,
Experimentation and Uncertainty Analysis for Engineers
, 2nd ed.,
Wiley
,
New York
.
36.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single Sample Experiments
,”
Mech. Eng.
,
75
(
1
), pp.
3
8
.http://54.243.252.9/engr-1330-webroot/6-Projects/PInstrumentCalibration/ Kline_McClintock1953.pdf
37.
Coleman
,
H. W.
,
Hodge
,
B. K.
, and
Taylor
,
R. P.
,
1984
, “
A Re-Evaluation of Schlichting's Surface Roughness Experiment
,”
ASME J. Fluids Eng.
,
106
(
1
), pp.
60
65
.10.1115/1.3242406
38.
Schlichting
,
H.
,
1937
, “
Experimental Investigation of the Problem of Surface Roughness
,” Washington, DC, Report No.
NACA-TM-823.
39.
Nishino
,
K.
,
Kasagi
,
N.
, and
Hirata
,
M.
,
1989
, “
Three-Dimensional Particle Tracking Velocimetry Based on Automated Digital Image Processing
,”
ASME J. Fluids Eng.
,
111
(
4
), pp.
384
391
.10.1115/1.3243657
40.
Ushijima
,
S.
, and
Tanaka
,
N.
,
1996
, “
Three-Dimensional Particle Tracking Velocimetry With Laser-Light Sheet Scannings
,”
ASME J. Fluids Eng.
,
118
(
2
), pp.
352
357
.10.1115/1.2817385
41.
Ruiz
,
A.
,
Fezzaa
,
K.
,
Kapat
,
J.
, and
Bhattacharya
,
S.
,
2020
, “
Measurements of the Flow in the Vicinity of an Additively Manufactured Turbine Leading-Edge Using X-Ray Particle Tracking Velocimetry
,”
ASME J. Fluids Eng.
,
142
(
5
), p.
051502
.10.1115/1.4045496
42.
Hamed
,
A. M.
,
Gallary
,
R. M.
, and
McAtee
,
B. R.
,
2024
, “
Localized Blowing for Near-Wake Flow and Vortical Structure Control in Turbulent Boundary Layers Over Periodic Two-Dimensional Roughness
,”
ASME J. Fluids Eng.
,
146
(
3
), p.
034502
.10.1115/1.4064103
43.
Tay
,
G. F. K.
,
Kuhn
,
D. C. S.
, and
Tachie
,
M. F.
,
2009
, “
Particle Image Velocimetry Study of Rough-Wall Turbulent Flows in Favorable Pressure Gradient
,”
ASME J. Fluids Eng.
,
131
(
6
), p.
061205
.10.1115/1.3112389
44.
TSI
,
2019
, “
Insight V3V 4G Software for Volumetric 3-Component Velocimetry Flow Measurement Systems
,” TSI, Shoreview, MN.
45.
Lei
,
Y.-C.
,
Tien
,
W.-H.
,
Duncan
,
J.
,
Paul
,
M.
,
Ponchaut
,
N.
,
Mouton
,
C.
,
Dabiri
,
D.
,
Rösgen
,
T.
, and
Hove
,
J.
,
2012
, “
A Vision-Based Hybrid Particle Tracking Velocimetry (PTV) Technique Using a Modified Cascade Correlation Peak-Finding Method
,”
Exp. Fluids
,
53
(
5
), pp.
1251
1268
.10.1007/s00348-012-1357-6
46.
Lai
,
W.
,
Pan
,
G.
,
Menon
,
R.
,
Troolin
,
D.
,
Graff
,
E.
,
Gharib
,
M.
, and
Pereira
,
F.
,
2008
, “
Volumetric Three-Component Velocimetry: A New Tool for 3D Flow Measurement
,”
Proceedings of the 14th International Symposium on Applications of Laser Techniques to Fluid Mechanics
,
Lisbon, Portugal
, July 7–10, pp.
1
12
.https://www.researchgate.net/publication/259671967_Volumetric_Three-Component_Velocimetry_a_New_Tool_for_3D_Flow_Measurement
47.
Han
,
J.
, and
Park
,
J.
,
1988
, “
Developing Heat Transfer in Rectangular Channels With Rib Turbulators
,”
Int. J. Heat Mass Transfer
,
31
(
1
), pp.
183
195
.10.1016/0017-9310(88)90235-9
48.
Yang
,
X. I. A.
,
Zhang
,
W.
,
Yuan
,
J.
, and
Kunz
,
R. F.
,
2023
, “
In Search of a Universal Rough Wall Model
,”
ASME J. Fluids Eng.
,
145
(
10
), p.
101302
.10.1115/1.4062820
49.
Altland
,
S.
,
Xu
,
H. H. A.
,
Yang
,
X. I. A.
, and
Kunz
,
R.
,
2022
, “
Modeling of Cube Array Roughness: RANS, Large Eddy Simulation, and Direct Numerical Simulation
,”
ASME J. Fluids Eng.
,
144
(
6
), p.
061106
.10.1115/1.4053611
50.
Ramani
,
A.
,
Schilt
,
L.
,
Nugroho
,
B.
,
Busse
,
A.
,
Jelly
,
T.
,
Monty
,
J.
, and
Hutchins
,
N.
,
2024
, “
An Assessment of Effective Slope as a Parameter for Turbulent Drag Prediction Over Multi-Scaled Roughness
,”
Exp. Fluids
,
65
(
6
), p.
78
.10.1007/s00348-024-03813-0
51.
Nikuradse
,
J.
,
1933
, “
Stromungsgesetze in Rauhen Rohren
,” VDI-Forschungsheft 361, Series B, Vol. 4, and as NACA TM 1292.
52.
Colebrook
,
F.
, and
White
,
M.
,
1937
, “
Experiments With Fluid Friction in Roughened Pipes
,”
Proc. R. Soc. London, Ser. A
,
161
, pp.
367
381
.10.1098/rspa.1937.0150
53.
Moody
,
L.
,
1944
, “
Friction Factors for Pipe Flow
,”
Trans. ASME
,
66
(
8
), pp.
671
678
.https://www.ipt.ntnu.no/~asheim/TPG4135/Moody.pdf
54.
Haaland
,
S.
,
1983
, “
Simple and Explicit Formulas for the Friction Factor in Turbulent Pipe Flow
,”
ASME J. Fluids Eng.
,
105
(
1
), pp.
89
90
.10.1115/1.3240948
55.
Bons
,
J.
,
2002
, “
St and cf Augmentation for Real Turbine Roughness With Elevated Freestream Turbulence
,”
ASME J. Turbomach.
,
124
(
4
), pp.
632
644
.10.1115/1.1505851
56.
Sigal
,
A.
, and
Danberg
,
J.
,
1990
, “
New Correlation of Roughness Density Effect on the Turbulent Boundary Layer
,”
AIAA J.
,
28
(
3
), pp.
554
556
.10.2514/3.10427
57.
Forooghi
,
P.
,
Stroh
,
A.
,
Magagnato
,
F.
,
Jakirlić
,
S.
, and
Frohnapfel
,
B.
,
2017
, “
Toward a Universal Roughness Correlation
,”
ASME J. Fluids Eng.
,
139
(
12
), p.
121201
.10.1115/1.4037280
58.
Flack
,
K. A.
, and
Schultz
,
M. P.
,
2010
, “
Review of Hydraulic Roughness Scales in the Fully Rough Regime
,”
ASME J. Fluids Eng.
,
132
(
4
), p.
041203
.10.1115/1.4001492
59.
Flack
,
K.
,
Schultz
,
M.
,
Barros
,
J.
, and
Kim
,
Y.
,
2016
, “
Skin-Friction Behavior in the Transitionally-Rough Regime
,”
Int. J. Heat Fluid Flow
,
61
(
Part A
), pp.
21
30
.10.1016/j.ijheatfluidflow.2016.05.008
60.
Stimpson
,
C.
,
Snyder
,
J.
,
Thole
,
K.
, and
Mongillo
,
D.
,
2017
, “
Scaling Roughness Effects on Pressure Loss and Heat Transfer in Additively Manufactured Channels
,”
ASME J. Turbomach.
,
139
(
2
), p.
021003
.10.1115/1.4034555
61.
Jelly
,
T.
,
Ramani
,
A.
,
Nugroho
,
B.
,
Hutchins
,
N.
, and
Busse
,
A.
,
2022
, “
Impact of Spanwise Effective Slope Upon Rough-Wall Turbulent Channel Flow
,”
J. Fluid Mech.
,
951
, p.
A1
.10.1017/jfm.2022.823
You do not currently have access to this content.