Abstract

Convergent-divergent (C-D) riblets represent a pioneering rough surface inspired by the skin of fast-swimming sharks and flight feathers of the birds. In this study, we applied convergent-divergent riblets to the outer surface of a circular cylinder to examine their influence on the near-wake flow structure behind the cylinder. Various experimental techniques, such as particle image velocimetry (PIV), hot-wire anemometer, and a load cell for force measurement, were employed for this study. The experimental measurements have been conducted at different Reynolds numbers ranging from (6–12) ×103. The findings from force measurement indicate a decrease in the mean drag coefficient of around 14%, 15%, 11%, and 12% obtained by riblets at Re = 6000, 7500, 10,000, and 12,000, respectively. The time-averaged flow field including streamlines, velocity field, Reynolds shear stress, vorticity, and turbulent kinetic energy were measured. The measurements suggest that the wake's size has decreased by using convergent-divergent riblets. Furthermore, data obtained from the hot-wire anemometer reveal that these riblets alter the vortex shedding frequency to a higher value and impact the amplitude peak of the power spectrum at various Re numbers.

References

1.
Roshko
,
A.
,
1955
, “
On the Wake and Drag of Bluff Bodies
,”
J. Aeronaut. Sci.
,
22
(
2
), pp.
124
132
.10.2514/8.3286
2.
Brika
,
D.
, and
Laneville
,
A.
,
1993
, “
Vortex-Induced Vibrations of a Long Flexible Circular Cylinder
,”
J. Fluid Mech.
,
250
, pp.
481
508
.10.1017/S0022112093001533
3.
Vandiver
,
J. K.
,
Jaiswal
,
V.
, and
Jhingran
,
V.
,
2009
, “
Insights on Vortex-Induced, Traveling Waves on Long Risers
,”
J. Fluids Struct.
,
25
(
4
), pp.
641
653
.10.1016/j.jfluidstructs.2008.11.005
4.
Wijesooriya
,
K.
,
Mohotti
,
D.
,
Amin
,
A.
, and
Chauhan
,
K.
,
2020
, “
An Uncoupled Fluid Structure Interaction Method in the Assessment of Structural Responses of Tall Buildings
,”
Structures
,
25
, pp.
448
462
.10.1016/j.istruc.2020.03.031
5.
Raghavan
,
K.
,
Ben-Simon
,
Y.
,
Garcia
,
E.
, and
Bernistas
,
M.
,
2008
, “
Vivace (Vortex Induced Vibration Aquatic Clean Energy): A New Concept in Generation of Clean and Renewable Energy From Fluid Flow
,”
ASME J. Offshore Mech. Arct. Eng.
,
130
(
4
), p.
041101
.10.1115/1.2957913
6.
Güven
,
O.
,
Farell
,
C.
, and
Patel
,
V. C.
,
1980
, “
Surface-Roughness Effects on the Mean Flow Past Circular Cylinders
,”
J. Fluid Mech.
,
98
(
4
), pp.
673
701
.10.1017/S0022112080000341
7.
Lo
,
K.
, and
Ko
,
N.
,
1999
, “
Vortex Interaction in the Formation Region of a Grooved Circular Cylinder
,”
Fluid Dyn. Res.
,
24
(
3
), pp.
161
183
.10.1016/S0169-5983(98)00023-9
8.
Huang
,
S.
,
2011
, “
VIV Suppression of a Two-Degree-of-Freedom Circular Cylinder and Drag Reduction of a Fixed Circular Cylinder by the Use of Helical Grooves
,”
J. Fluids Struct.
,
27
(
7
), pp.
1124
1133
.10.1016/j.jfluidstructs.2011.07.005
9.
Tsutsui
,
T.
, and
Igarashi
,
T.
,
2002
, “
Drag Reduction of a Circular Cylinder in an Air-Stream
,”
J. Wind Eng. Ind. Aerodyn.
,
90
(
4–5
), pp.
527
541
.10.1016/S0167-6105(01)00199-4
10.
Hwang
,
J.-Y.
, and
Yang
,
K.-S.
,
2007
, “
Drag Reduction on a Circular Cylinder Using Dual Detached Splitter Plates
,”
J. Wind Eng. Ind. Aerodyn.
,
95
(
7
), pp.
551
564
.10.1016/j.jweia.2006.11.003
11.
Butt
,
U.
,
Jehring
,
L.
, and
Egbers
,
C.
,
2014
, “
Mechanism of Drag Reduction for Circular Cylinders With Patterned Surface
,”
Int. J. Heat Fluid Flow
,
45
, pp.
128
134
.10.1016/j.ijheatfluidflow.2013.10.008
12.
Achenbach
,
E.
,
1971
, “
Influence of Surface Roughness on the Cross-Flow Around a Circular Cylinder
,”
J. Fluid Mech.
,
46
(
2
), pp.
321
335
.10.1017/S0022112071000569
13.
Bearman
,
P.
, and
Harvey
,
J.
,
1993
, “
Control of Circular Cylinder Flow by the Use of Dimples
,”
AIAA J.
,
31
(
10
), pp.
1753
1756
.10.2514/3.11844
14.
Ekmekci
,
A.
, and
Rockwell
,
D.
,
2010
, “
Effects of a Geometrical Surface Disturbance on Flow Past a Circular Cylinder: A Large-Scale Spanwise Wire
,”
J. Fluid Mech.
,
665
, pp.
120
157
.10.1017/S0022112010003848
15.
Talley
,
S.
,
Iaccarino
,
G.
,
Mungal
,
G.
, and
Mansour
,
N.
,
2001
, “
An Experimental and Computational Investigation of Flow Past Cacti
,”
Annual Research Briefs, Center for Turbulence Research, NASA Ames/Stanford University
, Mountain View, CA, pp.
51
63
.
16.
Liu
,
Y. Z.
,
Shi
,
L. L.
, and
Yu
,
J.
,
2011
, “
TR-PIV Measurement of the Wake Behind a Grooved Cylinder at Low Reynolds Number
,”
J. Fluids Struct.
,
27
(
3
), pp.
394
407
.10.1016/j.jfluidstructs.2010.11.013
17.
Huang
,
S.
,
2010
, “
Cylinder Drag Reduction by the Use of Helical Grooves
,”
Proceedings of the HYDRALAB III Joint User Meeting
, Hannover, Germany, Feb., pp.
115
118
.https://hydralab.eu/assets/history/Proceedings_Final_210110.pdf
18.
Ko
,
N.
,
Leung
,
Y.
, and
Chen
,
J.
,
1987
, “
Flow Past V-Groove Circular Cylinders
,”
AIAA J.
,
25
(
6
), pp.
806
811
.10.2514/3.9704
19.
Leung
,
Y.
, and
Ko
,
N.
,
1991
, “
Near Wall Characteristics of Flow Over Grooved Circular Cylinder
,”
Exp. Fluids
,
10
(
6
), pp.
322
332
.10.1007/BF00190248
20.
Leung
,
Y.
,
Wong
,
C.
, and
Ko
,
N.
,
1997
, “
Characteristics of Flows Over an Asymmetrically Grooved Circular Cylinder in the Transitional Regimes
,”
J. Wind Eng. Ind. Aerodyn.
,
69–71
, pp.
169
178
.10.1016/S0167-6105(97)00152-9
21.
Lee
,
S.-J.
,
Lim
,
H.-C.
,
Han
,
M.
, and
Lee
,
S. S.
,
2005
, “
Flow Control of Circular Cylinder With a V-Grooved Micro-Riblet Film
,”
Fluid Dyn. Res.
,
37
(
4
), pp.
246
266
.10.1016/j.fluiddyn.2005.05.002
22.
Quintavalla
,
S. J.
,
Angilella
,
A. J.
, and
Smits
,
A. J.
,
2013
, “
Drag Reduction on Grooved Cylinders in the Critical Reynolds Number Regime
,”
Exp. Therm. Fluid Sci.
,
48
, pp.
15
18
.10.1016/j.expthermflusci.2013.01.018
23.
Lim
,
H.-C.
, and
Lee
,
S.-J.
,
2003
, “
PIV Measurements of Near Wake Behind a U-Grooved Cylinder
,”
J. Fluids Struct.
,
18
(
1
), pp.
119
130
.10.1016/S0889-9746(03)00086-0
24.
Lim
,
H.-C.
, and
Lee
,
S.-J.
,
2002
, “
Flow Control of Circular Cylinders With Longitudinal Grooved Surfaces
,”
AIAA J.
,
40
(
10
), pp.
2027
2036
.10.2514/2.1535
25.
Alonzo-García
,
A.
,
Gutiérrez-Torres
,
C. D. C.
, and
Jiménez-Bernal
,
J. A.
,
2014
, “
Large Eddy Simulation of the Subcritical Flow Over a U-Grooved Circular Cylinder
,”
Adv. Mech. Eng.
,
6
, p.
418398
.10.1155/2014/418398
26.
Alonzo-García
,
A.
,
Gutiérrez-Torres
,
C. D. C.
,
Jimenez-Bernal
,
J. A.
,
López-Aguado-Montes
,
J.
,
Barbosa-Saldaña
,
J. G.
,
Mollinedo-Ponce-de Leon
,
H.
, and
Martinez-Delgadillo
,
S.
,
2015
, “
Large Eddy Simulation of the Subcritical Flow Over a V Grooved Circular Cylinder
,”
Nucl. Eng. Des.
,
291
, pp.
35
46
.10.1016/j.nucengdes.2015.05.001
27.
Xing
,
F.
, and
Lei
,
C.
,
2022
, “
A Large Eddy Simulation of Flow Over a Circular Cylinder With Circumferential Triangular Riblets: Effects of Spanwise Coverage Ratio
,”
Ocean Eng.
,
263
, p.
112439
.10.1016/j.oceaneng.2022.112439
28.
Zhou
,
B.
,
Wang
,
X.
,
Guo
,
W.
,
Zheng
,
J.
, and
Tan
,
S. K.
,
2015
, “
Experimental Measurements of the Drag Force and the Near-Wake Flow Patterns of a Longitudinally Grooved Cylinder
,”
J. Wind Eng. Ind. Aerodyn.
,
145
, pp.
30
41
.10.1016/j.jweia.2015.05.013
29.
Koeltzsch
,
K.
,
Dinkelacker
,
A.
, and
Grundmann
,
R.
,
2002
, “
Flow Over Convergent and Divergent Wall Riblets
,”
Exp. Fluids
,
33
(
2
), pp.
346
350
.10.1007/s00348-002-0446-3
30.
Chen
,
H.
,
Rao
,
F.
,
Shang
,
X.
,
Zhang
,
D.
, and
Hagiwara
,
I.
,
2013
, “
Biomimetic Drag Reduction Study on Herringbone Riblets of Bird Feather
,”
J. Bionic Eng.
,
10
(
3
), pp.
341
349
.10.1016/S1672-6529(13)60229-2
31.
Chen
,
H.
,
Rao
,
F.
,
Shang
,
X.
,
Zhang
,
D.
, and
Hagiwara
,
I.
,
2014
, “
Flow Over Bio-Inspired 3D Herringbone Wall Riblets
,”
Exp. Fluids
,
55
(
3
), p.
1698
.10.1007/s00348-014-1698-4
32.
Mohammadikarachi
,
A.
,
Yousif
,
M. Z.
,
Nugroho
,
B.
, and
Lim
,
H.-C.
,
2024
, “
An Exhaustive Review of Studies on Bio-Inspired Convergent–Divergent Riblets
,”
Ocean Eng.
,
295
, p.
116965
.10.1016/j.oceaneng.2024.116965
33.
Nugroho
,
B.
,
Hutchins
,
N.
, and
Monty
,
J. P.
,
2013
, “
Large-Scale Spanwise Periodicity in a Turbulent Boundary Layer Induced by Highly Ordered and Directional Surface Roughness
,”
Int. J. Heat Fluid Flow
,
41
, pp.
90
102
.10.1016/j.ijheatfluidflow.2013.04.003
34.
Xu
,
F.
,
Zhong
,
S.
, and
Zhang
,
S.
,
2018
, “
Vortical Structures and Development of Laminar Flow Over Convergent-Divergent Riblets
,”
Phys. Fluids
,
30
(
5
), p.
051901
.10.1063/1.5027522
35.
Guo
,
T.
,
Zhong
,
S.
, and
Craft
,
T.
,
2020
, “
Secondary Flow in a Laminar Boundary Layer Developing Over Convergent-Divergent Riblets
,”
Int. J. Heat Fluid Flow
,
84
, p.
108598
.10.1016/j.ijheatfluidflow.2020.108598
36.
Guo
,
T.
,
Zhong
,
S.
, and
Craft
,
T.
,
2020
, “
Control of Laminar Flow Separation Over a Backward-Facing Rounded Ramp With CD Riblets—The Effects of Riblet Height, Spacing and Yaw Angle
,”
Int. J. Heat Fluid Flow
,
85
, p.
108629
.10.1016/j.ijheatfluidflow.2020.108629
37.
Benschop
,
H.
, and
Breugem
,
W.-P.
,
2017
, “
Drag Reduction by Herringbone Riblet Texture in Direct Numerical Simulations of Turbulent Channel Flow
,”
J. Turbul.
,
18
(
8
), pp.
717
759
.10.1080/14685248.2017.1319951
38.
Xu
,
F.
,
Zhong
,
S.
, and
Zhang
,
S.
,
2019
, “
Statistical Analysis of Vortical Structures in Turbulent Boundary Layer Over Directional Grooved Surface Pattern With Spanwise Heterogeneity
,”
Phys. Fluids
,
31
(
8
), p.
085110
.10.1063/1.5110048
39.
Shahsavari
,
A.
,
Nili-Ahmadabadi
,
M.
,
Aslani
,
A.
, and
Kim
,
K. C.
,
2024
, “
Introduction of a Biomimetic Device Designed to Improve the Flow Over a Slender Delta Wing: Visualization Study
,”
J. Visualization
,
27
(
2
), pp.
177
195
.10.1007/s12650-024-00961-7
40.
Jørgensen
,
F. E.
,
2001
, “
How to Measure Turbulence With Hot-Wire Anemometers: A Practical Guide
,”
Dantec Dynamics
, Skovlunde, Denmark.
41.
Yavuzkurt
,
S.
,
1984
, “
A Guide to Uncertainty Analysis of Hot-Wire Data
,”
ASME J. Fluids Eng.
,
106
(
2
), pp.
181
186
.10.1115/1.3243096
42.
Sciacchitano
,
A.
, and
Wieneke
,
B.
,
2016
, “
PIV Uncertainty Propagation
,”
Meas. Sci. Technol.
,
27
(
8
), p.
084006
.10.1088/0957-0233/27/8/084006
43.
Wieneke
,
B.
,
2015
, “
PIV Uncertainty Quantification From Correlation Statistics
,”
Meas. Sci. Technol.
,
26
(
7
), p.
074002
.10.1088/0957-0233/26/7/074002
44.
Willert
,
C.
,
Wereley
,
S. T.
, and
Kompenhans
,
J.
,
2007
,
Particle Image Velocimetry: A Practical Guide
, Springer, Berlin, Germany.
45.
Adrian
,
R. J.
, and
Westerweel
,
J.
,
2011
,
Particle Image Velocimetry
,
Cambridge University Press
, Cambridge, UK, p.
30
.
46.
Transducers
,
S. G. B.
,
1988
, “
Their Design and Construction
,”
Measurements Group
, Raleigh, NC.https://mhforce.com/wpcontent/uploads/2022/10/SGBT.pdf
47.
Sumer
,
B. M.
,
2006
,
Hydrodynamics Around Cylindrical Structures
, Vol.
26
,
World Scientific
, Singapore.
48.
Achenbach
,
E.
,
1968
, “
Distribution of Local Pressure and Skin Friction Around a Circular Cylinder in Cross-Flow up to Re = 5 × 106
,”
J. Fluid Mech.
,
34
(
4
), pp.
625
639
.10.1017/S0022112068002120
You do not currently have access to this content.