Abstract

The physical mechanism, evolution process, and control method on pulsation caused by flow-induced excitation vortex in an axial flow pump are elaborated by numerical calculation and experiment. The mechanism formulation of flow-induced excitation vibration and the unique hydrodynamic design method of airfoil are proposed with three contrast models. According to the action law of inertial centrifugal force in the rotor–stator interaction (RSI) region and guide vane airfoil, the evaluation method between vortex transport, turbulent kinetic energy (TKE) and flow structure under transient and steady-state of internal flow field is established, which navigates the instability of energy intensity determined by the uneven gradient distribution. The distribution characteristics of flow-induced excitation pulsation in the RSI region and the static region are quantitatively verified by experiment. Along the streamwise direction, the excitation loss changes from impact loss to flow loss, with the RSI vortex affected by wake-jet flow vortices transforming into intervane vortex in the guide vane. In pulsation evaluation, the excitation pulsation form changes from blade frequency fBPF to low frequency band. Overall, the generation analysis of the excitation pulsation is realized based on the hydrodynamic optimal design with the comparison of models, which provides guidance for the optimization design of the axial flow pump to reduce vibration and energy consumption of the cooling system.

References

1.
Shi
,
L.
,
Chai
,
Y.
,
Wang
,
L.
,
Xu
,
T.
,
Jiang
,
Y.
,
Xing
,
J.
,
Yan
,
B.
,
Chen
,
Y.
, and
Han
,
Y.
,
2023
, “
Numerical Simulation and Model Test of the Influence of Guide Vane Angle on the Performance of Axial Flow Pump
,”
Phys. Fluids
,
35
(
1
), p.
015129
.10.1063/5.0134925
2.
Huang
,
B.
,
Zhang
,
M.
,
Pu
,
K.
,
Wu
,
P.
, and
Wu
,
D.
,
2021
, “
Study on the Four-Quadrant Homologous Characteristic and Two-Phase Flow Head Degradation of a Reactor Coolant Pump
,”
ASME J. Pressure Vessel Technol.
,
143
(
4
), p.
041404
.10.1115/1.4049710
3.
Shi
,
E.-B.
,
Fang
,
C.-Y.
,
Wang
,
C.
,
Xia
,
G.-L.
, and
Zhao
,
C.-N.
,
2015
, “
The Investigation of Passive Accident Mitigation Scheme for Advanced PWR NPP
,”
Ann. Nucl. Energy
,
85
, pp.
590
596
.10.1016/j.anucene.2015.06.012
4.
Cheng
,
K.
,
Meng
,
T.
,
Tian
,
C.
,
Yuan
,
H.
, and
Tan
,
S.
,
2018
, “
Experimental Investigation on Flow Characteristics of Pressure Drop Oscillations in a Closed Natural Circulation Loop
,”
Int. J. Heat Mass Transfer
,
122
, pp.
1162
1171
.10.1016/j.ijheatmasstransfer.2018.02.030
5.
Ahmed
,
N. M.
,
Gao
,
P. Z.
, and
Bello
,
S.
,
2019
, “
In Natural Circulation Systems in Nuclear Reactors: Advantages and Challenges
,” 4th International Conference on Energy Engineering and Environmental Protection (
EEEP
), Xiamen, China, Nov. 19–21, p.
012077
.10.1088/1755-1315/467/1/012077
6.
Li
,
W.
,
Yu
,
L.
,
Hao
,
J.
, and
Li
,
M.
,
2019
, “
Experimental and CFD Investigation on Flow Behaviors of a NPP Pump Under Natural Circulation Condition
,”
Sci. Technol. Nucl. Install.
, pp.
1
10
.10.1155/2019/5250894
7.
Jiang
,
D.
,
Yang
,
F.
,
Cai
,
Y.
,
Xu
,
G.
,
Tang
,
F.
, and
Jin
,
Y.
,
2023
, “
Cross Influence of Rotational Speed and Flow Rate on Pressure Pulsation and Hydraulic Noise of an Axial-Flow Pump
,”
Phys. Fluids
,
35
(
9
), p.
095144
.10.1063/5.0169967
8.
Zhou
,
R.
,
Liu
,
H.
,
Dong
,
L.
,
Ooi
,
K. T.
,
Dai
,
C.
, and
Hua
,
R.
,
2023
, “
Study on the Stall Vortex and Vibration Characteristics in Multi-Stage Pump Under Natural Flow Condition
,”
Phys. Fluids
,
35
(
8
), p.
084117
.10.1063/5.0160366
9.
Pu
,
K.
,
Huang
,
B.
,
Miao
,
H.
,
Shi
,
P.
, and
Wu
,
D.
,
2022
, “
Quantitative Analysis of Energy Loss and Vibration Performance in a Circulating Axial Pump
,”
Energy
,
243
, p.
122753
.10.1016/j.energy.2021.122753
10.
Pu
,
K.
,
Miao
,
H.
,
Li
,
J.
,
Huang
,
B.
,
Yuan
,
F.
,
Wu
,
P.
, and
Wu
,
D.
,
2023
, “
Numerical Investigation and Experiment on Natural Circulation Resistance and Energy Characteristics in a Circulating Axial Pump
,”
ASME J. Fluids Eng.
,
145
(
1
), p.
011208
.10.1115/1.4055781
11.
Kan
,
K.
,
Zhang
,
Q.
,
Xu
,
Z.
,
Zheng
,
Y.
,
Gao
,
Q.
, and
Shen
,
L.
,
2022
, “
Energy Loss Mechanism Due to Tip Leakage Flow of Axial Flow Pump as Turbine Under Various Operating Conditions
,”
Energy
,
255
, p.
124532
.10.1016/j.energy.2022.124532
12.
Kan
,
K.
,
Zhao
,
F.
,
Xu
,
H.
,
Feng
,
J.
,
Chen
,
H.
, and
Liu
,
W.
,
2023
, “
Energy Performance Evaluation of an Axial-Flow Pump as Turbine Under Conventional and Reverse Operating Modes Based on an Energy Loss Intensity Model
,”
Phys. Fluids
,
35
(
1
), p.
015125
.10.1063/5.0132667
13.
Cheng
,
H. Y.
,
Bai
,
X. R.
,
Long
,
X. P.
,
Ji
,
B.
,
Peng
,
X. X.
, and
Farhat
,
M.
,
2020
, “
Large Eddy Simulation of the Tip-Leakage Cavitating Flow With an Insight on How Cavitation Influences Vorticity and Turbulence
,”
Appl. Math. Model.
,
77
, pp.
788
809
.10.1016/j.apm.2019.08.005
14.
Shen
,
X.
,
Zhang
,
D.
,
Xu
,
B.
,
Wu
,
H.
,
Wang
,
P.
, and
Shi
,
W.
,
2022
, “
Comparative Study of Tip Leakage Vortex Trajectory and Cavitation in an Axial Flow Pump With Various Tip Clearances
,”
J. Mech. Sci. Technol.
,
36
(
3
), pp.
1289
1302
.10.1007/s12206-022-0219-2
15.
Zhu
,
D.
,
Xiao
,
R.
, and
Liu
,
W.
,
2021
, “
Influence of Leading-Edge Cavitation on Impeller Blade Axial Force in the Pump Mode of Reversible Pump-Turbine
,”
Renewable Energy
,
163
, pp.
939
949
.10.1016/j.renene.2020.09.002
16.
Cheng
,
Y.
,
Sun
,
Z.
,
Zhang
,
H.
, and
Liu
,
G.
,
2019
, “
Influence of Different Blade Angles on Characteristics of Axial Flow Pump Device With Elbow Flow Passage
,”
Fluid Mach.
,
47
(
6
), pp.
29
33
.10.3969/j.issn.1005-0329.2019.06.007
17.
Sha
,
Y.
, and
Hou
,
L.
,
2012
, “
Effects of Blade Thickness on Performance of Axial Flow Pump and Analysis of Internal Flow Field
,”
Trans. Chin. Soc. Agric. Eng.
,
28
(
18
), pp.
75
81
.10.3969/j.issn.1002-6819.2012.18.012
18.
Kaya
,
D.
,
2003
, “
Experimental Study on Regaining the Tangential Velocity Energy of Axial Flow Pump
,”
Energy Convers. Manage.
,
44
(
11
), pp.
1817
1829
.10.1016/S0196-8904(02)00187-5
19.
Feng
,
J.
,
Luo
,
X.
,
Guo
,
P.
, and
Wu
,
G.
,
2016
, “
Influence of Tip Clearance on Pressure Fluctuations in an Axial Flow Pump
,”
J. Mech. Sci. Technol.
,
30
(
4
), pp.
1603
1610
.10.1007/s12206-016-0315-2
20.
Li
,
Z.
,
Wang
,
Z.
,
Wei
,
X.
, and
Qin
,
D.
,
2016
, “
Flow Similarity in the Rotor–Stator Interaction Affected Region in Prototype and Model Francis Pump-Turbines in Generating Mode
,”
ASME J. Fluids Eng.
,
138
(
6
), p.
061201
.10.1115/1.4032298
21.
Tao
,
R.
,
Xiao
,
R.
, and
Wang
,
F.
,
2016
, “
Detached Eddy Simulations for High Speed Axial Flow Fuel Pumps With Swept and Straight Blade Impellers
,”
Eng. Comput.
,
33
(
8
), pp.
2530
2545
.10.1108/EC-06-2015-0165
22.
Jia
,
X.
,
Lv
,
H.
, and
Zhu
,
Z.
,
2023
, “
Research on the Influence of Impeller Tip Clearance on the Internal Flow Loss of Axial Circulating Pump Under Unpowered Driven Condition
,”
ASME J. Fluids Eng.
,
145
(
2
), p.
021202
.10.1115/1.4055990
23.
Liu
,
Y.
,
Han
,
Y.
,
Tan
,
L.
, and
Wang
,
Y.
,
2020
, “
Blade Rotation Angle on Energy Performance and Tip Leakage Vortex in a Mixed Flow Pump as Turbine at Pump Mode
,”
Energy
,
206
, p.
118084
.10.1016/j.energy.2020.118084
24.
Chen
,
X.
,
Cao
,
L.
,
Yan
,
P.
,
Wu
,
P.
, and
Wu
,
D.
,
2017
, “
Effect of Meridional Shape on Performance of Axial-Flow Fan
,”
J. Mech. Sci. Technol.
,
31
(
11
), pp.
5141
5151
.10.1007/s12206-017-1008-1
25.
Wu
,
C.
,
Pu
,
K.
,
Li
,
C.
,
Wu
,
P.
,
Huang
,
B.
, and
Wu
,
D.
,
2022
, “
Blade Redesign Based on Secondary Flow Suppression to Improve Energy Efficiency of a Centrifugal Pump
,”
Energy
,
246
, p.
123394
.10.1016/j.energy.2022.123394
26.
Li
,
C.-H.
,
Wu
,
X.-T.
,
Luo
,
X.-Q.
,
Feng
,
J.-J.
, and
Zhu
,
G.-J.
,
2023
, “
Investigation on the Entropy Production Distribution in a Multiphase Pump Considering Gas–Liquid Two-Phase Velocity Slip
,”
Phys. Fluids
,
35
(
10
), p.
103306
.10.1063/5.0169251
27.
Rodriguez
,
C. G.
,
Egusquiza
,
E.
, and
Santos
,
I. F.
,
2007
, “
Frequencies in the Vibration Induced by the Rotor Stator Interaction in a Centrifugal Pump Turbine
,”
ASME J. Fluids Eng.
,
129
(
11
), pp.
1428
1435
.10.1115/1.2786489
28.
Roache
,
P. J.
,
1997
, “
Quantification of Uncertainty in Computational Fluid Dynamics
,”
Annu. Rev. Fluid Mech.
,
29
(
1
), pp.
123
160
.10.1146/annurev.fluid.29.1.123
29.
Moffat
,
R. J.
,
1982
, “
Contributions to the Theory of Single-Sample Uncertainty Analysis
,”
ASME J. Fluids Eng.
,
104
(
2
), pp.
250
258
.10.1115/1.3241818
You do not currently have access to this content.