Abstract

Immersed boundary methods (IBMs) have evolved over the past 50 years from a specialized technique in biofluid dynamics and applied mathematics to a cornerstone of computational fluid dynamics. Many recent advancements in immersed boundary methods have centered on sharp-interface immersed boundary methods, which offer enhanced accuracy and fidelity for flow simulations. This paper outlines the key principles that have driven our own efforts in the development of sharp-interface immersed boundary methods over the past 25 years. We also highlight the power and versatility of these methods by showcasing a range of applications, spanning biolocomotion (i.e., swimming and flying), physiological flows, compressible aerodynamics, fluid–structure interaction (FSI), and flow-induced noise.

References

1.
Peskin
,
C. S.
,
1972
, “
Flow Patterns Around Heart Valves: A Digital Computer Method for Solving the Equations of Motion
,”
Ph.D. thesis
,
Albert Einstein College of Medicine of Yeshiva University
, New York.https://hdl.handle.net/20.500.12202/2090
2.
Peskin
,
C. S.
,
1972
, “
Flow Patterns Around Heart Valves: A Numerical Method
,”
J. Comput. Phys.
,
10
(
2
), pp.
252
271
.10.1016/0021-9991(72)90065-4
3.
Peskin
,
C. S.
,
1977
, “
Numerical Analysis of Blood Flow in the Heart
,”
J. Comput. Phys.
,
25
(
3
), pp.
220
252
.10.1016/0021-9991(77)90100-0
4.
Goldstein
,
D.
,
Handler
,
R.
, and
Sirovich
,
L.
,
1993
, “
Modeling a No-Slip Flow Boundary With an External Force Field
,”
J. Comput. Phys.
,
105
(
2
), pp.
354
366
.10.1006/jcph.1993.1081
5.
Tryggvason
,
G.
,
Bunner
,
B.
,
Esmaeeli
,
A.
,
Juric
,
D.
,
Al-Rawahi
,
N.
,
Tauber
,
W.
,
Han
,
J.
,
Nas
,
S.
, and
Jan
,
Y.-J.
,
2001
, “
A Front-Tracking Method for the Computations of Multiphase Flow
,”
J. Comput. Phys.
,
169
(
2
), pp.
708
759
.10.1006/jcph.2001.6726
6.
Angot
,
P.
,
Bruneau
,
C. H.
, and
Fabrie
,
P.
,
1999
, “
A Penalization Method to Take Into Account Obstacles in Incompressible Viscous Flows
,”
Numer. Math.
,
81
(
4
), pp.
497
520
.10.1007/s002110050401
7.
Scardovelli
,
R.
, and
Zaleski
,
S.
,
1999
, “
Direct Numerical Simulation of Free-Surface and Interfacial Flow
,”
Annu. Rev. Fluid Mech.
,
31
(
1
), pp.
567
603
.10.1146/annurev.fluid.31.1.567
8.
Anderson
,
D. M.
,
McFadden
,
G. B.
, and
Wheeler
,
A. A.
,
1998
, “
Diffuse-Interface Methods in Fluid Mechanics
,”
Annu. Rev. Fluid Mech.
,
30
(
1
), pp.
139
165
.10.1146/annurev.fluid.30.1.139
9.
Mittal
,
R.
, and
Seo
,
J. H.
,
2023
, “
Origin and Evolution of Immersed Boundary Methods in Computational Fluid Dynamics
,”
Phys. Rev. Fluids
,
8
(
10
), p.
100501
.10.1103/PhysRevFluids.8.100501
10.
Kirkpatrick
,
M. P.
,
Armfield
,
S. W.
, and
Kent
,
J. H.
,
2003
, “
A Representation of Curved Boundaries for the Solution of the Navier-Stokes Equations on a Staggered Three-Dimensional Cartesian Grid
,”
J. Comput. Phys.
,
184
(
1
), pp.
1
36
.10.1016/S0021-9991(02)00013-X
11.
Glowinski
,
R.
,
Pan
,
T. W.
, and
Periaux
,
J.
,
1994
, “
A Fictitious Domain Method for External Incompressible Viscous Flow Modeled by Navier-Stokes Equations
,”
Comput. Methods Appl. Mech. Eng.
,
112
(
1–4
), pp.
133
148
.10.1016/0045-7825(94)90022-1
12.
Unverdi
,
S. O.
, and
Tryggvason
,
G.
,
1992
, “
A Front-Tracking Method for Viscous, Incompressible, Multi-Fluid Flows
,”
J. Comput. Phys.
,
100
(
1
), pp.
25
37
.10.1016/0021-9991(92)90307-K
13.
Briscolini
,
M.
, and
Santangelo
,
P.
,
1989
, “
Development of the Mask Method for Incompressible Unsteady Flows
,”
J. Comput. Phys.
,
84
(
1
), pp.
57
75
.10.1016/0021-9991(89)90181-2
14.
Mittal
,
R.
, and
Moin
,
P.
,
1997
, “
Suitability of Upwind-Biased Finite Difference Schemes for Large-Eddy Simulation of Turbulent Flows
,”
AIAA J.
,
35
(
8
), pp.
1415
1417
.10.2514/2.253
15.
Weymouth
,
G. D.
, and
Yue
,
D. K.
,
2011
, “
Boundary Data Immersion Method for Cartesian-Grid Simulations of Fluid-Body Interaction Problems
,”
J. Comput. Phys.
,
230
(
16
), pp.
6233
6247
.10.1016/j.jcp.2011.04.022
16.
Taira
,
K.
, and
Colonius
,
T.
,
2007
, “
The Immersed Boundary Method: A Projection Approach
,”
J. Comput. Phys.
,
225
(
2
), pp.
2118
2137
.10.1016/j.jcp.2007.03.005
17.
Ye
,
T.
,
Mittal
,
R.
,
Udaykumar
,
H. S.
, and
Shyy
,
W.
,
1999
, “
An Accurate Cartesian Grid Method for Viscous Incompressible Flows With Complex Immersed Boundaries
,”
J. Comput. Phys.
,
156
(
2
), pp.
209
240
.10.1006/jcph.1999.6356
18.
Meyer
,
M.
,
Devesa
,
A.
,
Hickel
,
S.
,
Hu
,
X. Y.
, and
Adams
,
N. A.
,
2010
, “
A Conservative Immersed Interface Method for Large-Eddy Simulation of Incompressible Flows
,”
J. Comput. Phys.
,
229
(
18
), pp.
6300
6317
.10.1016/j.jcp.2010.04.040
19.
Meinke
,
M.
,
Schneiders
,
L.
,
Günther
,
C.
, and
Schröder
,
W.
,
2013
, “
A Cut-Cell Method for Sharp Moving Boundaries in Cartesian Grids
,”
Comput. Fluids
,
85
, pp.
135
142
.10.1016/j.compfluid.2012.11.010
20.
Seo
,
J. H.
, and
Mittal
,
R.
,
2011
, “
A Sharp-Interface Immersed Boundary Method With Improved Mass Conservation and Reduced Spurious Pressure Oscillations
,”
J. Comput. Phys.
,
230
(
19
), pp.
7347
7363
.10.1016/j.jcp.2011.06.003
21.
Mittal
,
R.
,
Dong
,
H.
,
Bozkurttas
,
M.
,
Najjar
,
F. M.
,
Vargas
,
A.
, and
von Loebbecke
,
A.
,
2008
, “
A Versatile Sharp Interface Immersed Boundary Method for Incompressible Flows With Complex Boundaries
,”
J. Comput. Phys.
,
227
(
10
), pp.
4825
4852
.10.1016/j.jcp.2008.01.028
22.
Udaykumar
,
H. S.
,
Shyy
,
W.
, and
Rao
,
M. M.
,
1996
, “
Elafint: A Mixed Eulerian-Lagrangian Method for Fluid Flows With Complex and Moving Boundaries
,”
Int. J. Numer. Methods Fluids
,
22
(
8
), pp.
691
712
.10.1002/(SICI)1097-0363(19960430)22:8<691::AID-FLD371>3.0.CO;2-U
23.
Udaykumar
,
H. S.
,
Mittal
,
R.
,
Rampunggoon
,
P.
, and
Khanna
,
A.
,
2001
, “
A Sharp Interface Cartesian Grid Method for Simulating Flows With Complex Moving Boundaries
,”
J. Comput. Phys.
,
174
(
1
), pp.
345
380
.10.1006/jcph.2001.6916
24.
Mittal
,
R.
, and
Iaccarino
,
G.
,
2005
, “
Immersed Boundary Methods
,”
Annu. Rev. Fluid Mech.
,
37
(
1
), pp.
239
261
.10.1146/annurev.fluid.37.061903.175743
25.
LeVeque
,
R. J.
,
2002
, “
Boundary Conditions and Ghost Cells
,”
Finite Volume Methods for Hyperbolic Problems
(Cambridge Texts in Applied Mathematics),
Cambridge University Press
, Cambridge, UK, pp.
129
138
.
26.
Gross
,
A.
, and
Fasel
,
H.
,
2007
, “
Characteristic Ghost Cell Boundary Condition
,”
AIAA J.
,
45
(
1
), pp.
302
306
.10.2514/1.23130
27.
Motheau
,
E.
,
Almgren
,
A.
, and
Bell
,
J. B.
,
2017
, “
Navier–Stokes Characteristic Boundary Conditions Using Ghost Cells
,”
AIAA J.
,
55
(
10
), pp.
3399
3408
.10.2514/1.J055885
28.
Tseng
,
Y. H.
, and
Ferziger
,
J. H.
,
2003
, “
A Ghost-Cell Immersed Boundary Method for Flow in Complex Geometry
,”
J. Comput. Phys.
,
192
(
2
), pp.
593
623
.10.1016/j.jcp.2003.07.024
29.
Ghias
,
R.
,
Mittal
,
R.
, and
Lund
,
T.
,
2004
, “
A Non-Body Conformal Grid Method for Simulation of Compressible Flows With Complex Immersed Boundaries
,”
AIAA
Paper No. 2004-80.10.2514/6.2004-80
30.
Ghias
,
R.
,
Mittal
,
R.
, and
Dong
,
H.
,
2007
, “
A Sharp Interface Immersed Boundary Method for Compressible Viscous Flows
,”
J. Comput. Phys.
,
225
(
1
), pp.
528
553
.10.1016/j.jcp.2006.12.007
31.
Fedkiw
,
R. P.
,
Aslam
,
T.
,
Merriman
,
B.
, and
Osher
,
S.
,
1999
, “
A Non-Oscillatory Eulerian Approach to Interfaces in Multimaterial Flows (the Ghost Fluid Method)
,”
J. Comput. Phys.
,
152
(
2
), pp.
457
492
.10.1006/jcph.1999.6236
32.
Fedkiw
,
R. P.
,
2002
, “
Coupling an Eulerian Fluid Calculation to a Lagrangian Solid Calculation With the Ghost Fluid Method
,”
J. Comput. Phys.
,
175
(
1
), pp.
200
224
.10.1006/jcph.2001.6935
33.
Seo
,
J. H.
, and
Mittal
,
R.
,
2011
, “
A High-Order Immersed Boundary Method for Acoustic Wave Scattering and Low-Mach Number Flow-Induced Sound in Complex Geometries
,”
J. Comput. Phys.
,
230
(
4
), pp.
1000
1019
.10.1016/j.jcp.2010.10.017
34.
Seo
,
J. H.
,
Bakhshaee
,
H.
,
Garreau
,
G.
,
Zhu
,
C.
,
Andreou
,
A.
,
Thompson
,
W. R.
, and
Mittal
,
R.
,
2017
, “
A Method for the Computational Modeling of the Physics of Heart Murmurs
,”
J. Comput. Phys.
,
336
, pp.
546
568
.10.1016/j.jcp.2017.02.018
35.
Turner
,
J.
,
Seo
,
J. H.
, and
Mittal
,
R.
,
2024
, “
A High-Order Sharp-Interface Immersed Boundary Solver for High-Speed Flows
,”
J. Comput. Phys.
,
500
, p.
112748
.10.1016/j.jcp.2023.112748
36.
Turner
,
J.
,
Seo
,
J. H.
, and
Mittal
,
R.
,
2024
, “
Sinusoidally Pitching Foils in Transonic Flow: Insights Into Flutter From Time Accurate Simulations
,”
AIAA J.
,
62
(
3
), pp.
1148
1158
.10.2514/1.J063142
37.
Yang
,
J.
, and
Balaras
,
E.
,
2006
, “
An Embedded-Boundary Formulation for Large-Eddy Simulation of Turbulent Flows Interacting With Moving Boundaries
,”
J. Comput. Phys.
,
215
(
1
), pp.
12
40
.10.1016/j.jcp.2005.10.035
38.
Vanella
,
M.
, and
Balaras
,
E.
,
2009
, “
Short Note: A Moving-Least-Squares Reconstruction for Embedded-Boundary Formulations
,”
J. Comput. Phys.
,
228
(
18
), pp.
6617
6628
.10.1016/j.jcp.2009.06.003
39.
de Tullio
,
M. D.
, and
Pascazio
,
G.
,
2016
, “
A Moving-Least-Squares Immersed Boundary Method for Simulating the Fluid–Structure Interaction of Elastic Bodies With Arbitrary Thickness
,”
J. Comput. Phys.
,
325
, pp.
201
225
.10.1016/j.jcp.2016.08.020
40.
Verzicco
,
R.
, and
Querzoli
,
G.
,
2021
, “
On the Collision of a Rigid Sphere With a Deformable Membrane in a Viscous Fluid
,”
J. Fluid Mech.
,
914
, p.
A19
.10.1017/jfm.2020.939
41.
Liu
,
H.
,
Krishnan
,
S.
,
Marella
,
S.
, and
Udaykumar
,
H.
,
2005
, “
Sharp Interface Cartesian Grid Method II: A Technique for Simulating Droplet Interactions With Surfaces of Arbitrary Shape
,”
J. Comput. Phys.
,
210
(
1
), pp.
32
54
.10.1016/j.jcp.2005.03.032
42.
Marella
,
S.
,
Krishnan
,
S.
,
Liu
,
H.
, and
Udaykumar
,
H.
,
2005
, “
Sharp Interface Cartesian Grid Method I: An Easily Implemented Technique for 3D Moving Boundary Computations
,”
J. Comput. Phys.
,
210
(
1
), pp.
1
31
.10.1016/j.jcp.2005.03.031
43.
Van Kan
,
J.
,
1986
, “
A Second-Order Accurate Pressure-Correction Scheme for Viscous Incompressible Flow
,”
SIAM J. Sci. Stat. Comput.
,
7
(
3
), pp.
870
891
.10.1137/0907059
44.
Kim
,
J.
, and
Moin
,
P.
,
1985
, “
Application of a Fractional-Step Method to Incompressible Navier-Stokes Equations
,”
J. Comput. Phys.
,
59
(
2
), pp.
308
323
.10.1016/0021-9991(85)90148-2
45.
Choi
,
H.
,
Moin
,
P.
, and
Kim
,
J.
,
1992
, “
Turbulent Drag Reduction: Studies of Feedback Control and Flow Over Riblets
,”
Thermosciences Division, Department of Mechanical Engineering, Stanford University
, Stanford, CA, Report No. TF-55.
46.
Hedenström
,
A.
, and
Johansson
,
L. C.
,
2015
, “
Bat Flight: Aerodynamics, Kinematics and Flight Morphology
,”
J. Exp. Biol.
,
218
(
5
), pp.
653
663
.10.1242/jeb.031203
47.
Ramezani
,
A.
,
Chung
,
S.-J.
, and
Hutchinson
,
S.
,
2017
, “
A Biomimetic Robotic Platform to Study Flight Specializations of Bats
,”
Sci. Rob.
,
2
(
3
), p.
eaal2505
.10.1126/scirobotics.aal2505
48.
Kumar
,
S.
,
Seo
,
J.-H.
,
Skandalis
,
D.
,
Moss
,
C.
, and
Mittal
,
R.
,
2022
, “
Fluid-Structure Interaction of Bat-Inspired Membrane Wings
,” 75th Annual Meeting of the Division of Fluid Dynamics, Indianapolis, IN, Nov. 20–22.
49.
Kumar
,
S.
,
Seo
,
J.-H.
, and
Mittal
,
R.
,
2023
, “
Unraveling the Complexity of Flapping Flight in Bats Via High-Fidelity Fluid-Structure Interaction Modeling
,”
76th Annual Meeting of the Division of Fluid Dynamics
, Washington, DC, Nov. 19–21.
50.
Bridson
,
R.
,
Marino
,
S.
, and
Fedkiw
,
R.
,
2005
, “
Simulation of Clothing With Folds and Wrinkles
,”
ACM SIGGRAPH 2005 Courses
, Los Angeles, CA, July 31–Aug. 4, p.
3-es
.10.1145/1198555.1198573
51.
Riskin
,
D. K.
,
Willis
,
D. J.
,
Iriarte-Diaz
,
J.
,
Hedrick
,
T. L.
,
Kostandov
,
M.
,
Chen
,
J.
,
Laidlaw
,
D. H.
,
Breuer
,
K. S.
, and
Swartz
,
S. M.
,
2008
, “
Quantifying the Complexity of Bat Wing Kinematics
,”
J. Theor. Biol.
,
254
(
3
), pp.
604
615
.10.1016/j.jtbi.2008.06.011
52.
Li
,
G.
,
Law
,
Y. Z.
, and
Jaiman
,
R. K.
,
2019
, “
A Novel 3D Variational Aeroelastic Framework for Flexible Multibody Dynamics: Application to Bat-Like Flapping Dynamics
,”
Comput. Fluids
,
180
, pp.
96
116
.10.1016/j.compfluid.2018.11.013
53.
Lauber
,
M.
,
Weymouth
,
G. D.
, and
Limbert
,
G.
,
2023
, “
Rapid Flapping and Fibre-Reinforced Membrane Wings Are Key to High-Performance Bat Flight
,”
J. R. Soc. Interface
,
20
(
208
), p.
20230466
.10.1098/rsif.2023.0466
54.
Menon
,
K.
,
Kumar
,
S.
, and
Mittal
,
R.
,
2022
, “
Contribution of Spanwise and Cross-Span Vortices to the Lift Generation of Low-Aspect-Ratio Wings: Insights From Force Partitioning
,”
Phys. Rev. Fluids
,
7
(
11
), p.
114102
.10.1103/PhysRevFluids.7.114102
55.
Seo
,
J.-H.
, and
Mittal
,
R.
,
2022
, “
Improved Swimming Performance in Schooling Fish Via Leading-Edge Vortex Enhancement
,”
Bioinspiration Biomimetics
,
17
(
6
), p.
066020
.10.1088/1748-3190/ac9bb4
56.
Viola
,
F.
,
Spandan
,
V.
,
Meschini
,
V.
,
Romero
,
J.
,
Fatica
,
M.
,
de Tullio
,
M. D.
, and
Verzicco
,
R.
,
2022
, “
FSEI-GPU: GPU Accelerated Simulations of the Fluid–Structure–Electrophysiology Interaction in the Left Heart
,”
Comput. Phys. Commun.
,
273
, p.
108248
.10.1016/j.cpc.2021.108248
57.
Raj
,
A.
,
Khan
,
P. M.
,
Alam
,
M. I.
,
Prakash
,
A.
, and
Roy
,
S.
,
2023
, “
A GPU-Accelerated Sharp Interface Immersed Boundary Method for Versatile Geometries
,”
J. Comput. Phys.
,
478
, p.
111985
.10.1016/j.jcp.2023.111985
58.
Partridge
,
B. L.
,
1982
, “
The Structure and Function of Fish Schools
,”
Sci. Am.
, 246(6), pp.
114
123
.10.1038/scientificamerican0682-114
59.
Pavlov
,
D. S.
, and
Kasumyan
,
A. O.
,
2000
, “
Patterns and Mechanisms of Schooling Behaviour in Fish: A Review
,”
J. Ichthyol.
,
40
(
2
), pp.
163
231
.https://www.researchgate.net/publication/264977013_Patterns_and_mechanisms_of_schooling_behavior_in_fish_A_review#:~:text=The%20basic%20mechanisms%20of%20schooling,and%20mutually%20coordinated%20behavioral%20responses.
60.
Liao
,
J. C.
,
2007
, “
A Review of Fish Swimming Mechanics and Behaviour in Altered Flows
,”
Philos. Trans. R. Soc. B: Biol. Sci.
,
362
(
1487
), pp.
1973
1993
.10.1098/rstb.2007.2082
61.
Pitcher
,
T. J.
,
Magurran
,
A. E.
, and
Winfield
,
I. J.
,
1982
, “
Fish in Larger Shoals Find Food Faster
,”
Behav. Ecol. Sociobiol.
,
10
(
2
), pp.
149
151
.10.1007/BF00300175
62.
Weihs
,
D.
,
1973
, “
Hydromechanics of Fish Schooling
,”
Annu. Rev. Physiol.
,
26
(
2
), p.
357
.10.1038/241290a0
63.
Anras
,
M.-L. B.
,
Lagardére
,
J.-P.
, and
Lafaye
,
J.-Y.
,
1997
, “
Diel Activity Rhythm of Seabass Tracked in a Natural Environment: Group Effects on Swimming Patterns and Amplitudes
,”
Can. J. Fish. Aquat. Sci.
,
54
(
1
), pp.
162
168
.10.1139/f96-253
64.
Larsson
,
M.
,
2012
, “
Why Do Fish School?
,”
Curr. Zool.
,
58
(
1
), pp.
116
128
.10.1093/czoolo/58.1.116
65.
Zhou
,
J.
,
Seo
,
J.-H.
, and
Mittal
,
R.
,
2024
, “
Effect of Schooling on Flow Generated Sounds From Carangiform Swimmers
,”
Bioinspiration Biomimetics
,
19
(
3
), p.
036015
.10.1088/1748-3190/ad3a4e
66.
Mittal
,
B.
,
Zhou
,
J.
, and
Mittal
,
R.
,
2023
, “
Exploring Predator Interaction With a School of Prey Fish Using a Flow-Physics Informed Agent-Based Model
,” 76th Annual Meeting of the Division of Fluid Dynamics, Washington, DC, Nov. 19–21.
67.
Pan
,
Y.
, and
Lauder
,
G. V.
,
2024
, “
Combining Computational Fluid Dynamics and Experimental Data to Understand Fish Schooling Behavior
,”
Integr. Comp. Biol.
,
64
(
3
), p.
icae044
.10.1093/icb/icae044
68.
Videler
,
J. J.
, and
Hess
,
F.
,
1984
, “
Fast Continuous Swimming of Two Pelagic Predators, Saithe (Pollachius Virens) and Mackerel (Scomber Scombrus): A Kinematic Analysis
,”
J. Exp. Biol.
,
109
(
1
), pp.
209
228
.10.1242/jeb.109.1.209
69.
Zhou
,
J.
,
Seo
,
J.-H.
, and
Mittal
,
R.
,
2023
, “
Effect of Turbulence on the Hydrodynamics of Fish Schools
,” 76th Annual Meeting of the Division of Fluid Dynamics, Washington, DC, Nov. 19–21.
70.
Delewi
,
R.
,
Zijlstra
,
F.
, and
Piek
,
J. J.
,
2012
, “
Left Ventricular Thrombus Formation After Acute Myocardial Infarction
,”
Heart
,
98
(
23
), pp.
1743
1749
.10.1136/heartjnl-2012-301962
71.
Harfi
,
T. T.
,
Seo
,
J.-H.
,
Yasir
,
H. S.
,
Welsh
,
N.
,
Mayer
,
S. A.
,
Abraham
,
T. P.
,
George
,
R. T.
, and
Mittal
,
R.
,
2017
, “
The E-Wave Propagation Index (EPI): A Novel Echocardiographic Parameter for Prediction of Left Ventricular Thrombus. Derivation From Computational Fluid Dynamic Modeling and Validation on Human Subjects
,”
Int. J. Cardiol.
,
227
, pp.
662
667
.10.1016/j.ijcard.2016.10.079
72.
Seo
,
J. H.
,
Abd
,
T.
,
George
,
R. T.
, and
Mittal
,
R.
,
2016
, “
A Coupled Chemo-Fluidic Computational Model for Thrombogenesis in Infarcted Left Ventricles
,”
Am. J. Physiol.-Heart Circ. Physiol.
,
310
(
11
), pp.
H1567
H1582
.10.1152/ajpheart.00855.2015
73.
Seo
,
J. H.
, and
Mittal
,
R.
,
2022
, “
Computational Modeling of Drug Dissolution in the Human Stomach
,”
Front. Physiol.
,
12
, p.
755997
.10.3389/fphys.2021.755997
74.
Lee
,
J. H.
,
Kuhar
,
S.
,
Seo
,
J.-H.
,
Pasricha
,
P. J.
, and
Mittal
,
R.
,
2022
, “
Computational Modeling of Drug Dissolution in the Human Stomach: Effects of Posture and Gastroparesis on Drug Bioavailability
,”
Phys. Fluids
,
34
(
8
), p.
081904
.10.1063/5.0096877
75.
Tijdeman
,
H.
, and
Seebass
,
R.
,
1980
, “
Transonic Flow Past Oscillating Airfoils
,”
Annu. Rev. Fluid Mech.
,
12
(
1
), pp.
181
222
.10.1146/annurev.fl.12.010180.001145
76.
Denegri
,
C. M.
, Jr.
,
Dubben
,
J. A.
, and
Maxwell
,
D. L.
,
2005
, “
In-Flight Wing Deformation Characteristics During Limit Cycle Oscillations
,”
J. Aircr.
,
42
(
2
), pp.
500
508
.10.2514/1.1345
77.
Lambourne
,
N. C.
,
1964
, “
Control-Surface Buzz
,”
HM Stationery Office
, London, UK, Reports and Memoranda No. 3364.
78.
Yamasaki
,
M.
,
Isogai
,
K.
,
Uchida
,
T.
, and
Yukimura
,
I.
,
2004
, “
Shock-Stall Flutter of a Two-Dimensional Airfoil
,”
AIAA J.
,
42
(
2
), pp.
215
219
.10.2514/1.9088
79.
Braune
,
M.
, and
Koch
,
S.
,
2020
, “
Application of Hot-Film Anemometry to Resolve the Unsteady Boundary Layer Transition of a Laminar Airfoil Experiencing Limit Cycle Oscillations
,”
Exp. Fluids
,
61
(
2
), p.
68
.10.1007/s00348-020-2907-y
80.
Morse
,
T.
, and
Williamson
,
C.
,
2009
, “
Prediction of Vortex-Induced Vibration Response by Employing Controlled Motion
,”
J. Fluid Mech.
,
634
, pp.
5
39
.10.1017/S0022112009990516
81.
Bhat
,
S. S.
, and
Govardhan
,
R. N.
,
2013
, “
Stall Flutter of NACA 0012 Airfoil at Low Reynolds Numbers
,”
J. Fluids Struct.
,
41
, pp.
166
174
.10.1016/j.jfluidstructs.2013.04.001
82.
Menon
,
K.
, and
Mittal
,
R.
,
2019
, “
Flow Physics and Dynamics of Flow-Induced Pitch Oscillations of an Airfoil
,”
J. Fluid Mech.
,
877
, pp.
582
613
.10.1017/jfm.2019.627
83.
Loth
,
E.
,
Tyler Daspit
,
J.
,
Jeong
,
M.
,
Nagata
,
T.
, and
Nonomura
,
T.
,
2021
, “
Supersonic and Hypersonic Drag Coefficients for a Sphere
,”
AIAA J.
,
59
(
8
), pp.
3261
3274
.10.2514/1.J060153
84.
Kawai
,
S.
, and
Lele
,
S. K.
,
2008
, “
Localized Artificial Diffusivity Scheme for Discontinuity Capturing on Curvilinear Meshes
,”
J. Comput. Phys.
,
227
(
22
), pp.
9498
9526
.10.1016/j.jcp.2008.06.034
85.
Nyaaba
,
A. A.
, and
Ayamga
,
M.
,
2021
, “
Intricacies of Medical Drones in Healthcare Delivery: Implications for Africa
,”
Technol. Soc.
,
66
, p.
101624
.10.1016/j.techsoc.2021.101624
86.
Candeloro
,
P.
,
Ragni
,
D.
, and
Pagliaroli
,
T.
,
2022
, “
Small-Scale Rotor Aeroacoustics for Drone Propulsion: A Review of Noise Sources and Control Strategies
,”
Fluids
,
7
(
8
), p.
279
.10.3390/fluids7080279
87.
Yu
,
Y. H.
,
2000
, “
Rotor Blade–Vortex Interaction Noise
,”
Prog. Aerosp. Sci.
,
36
(
2
), pp.
97
115
.10.1016/S0376-0421(99)00012-3
88.
Vogeley
,
A. W.
,
1949
, “
Sound-Level Measurements of a Light Airplane Modified to Reduce Noise Reaching the Ground
,”
National Advisory Committee for Aeronautics
, Washington, DC, Report No.
TR-926
.https://ntrs.nasa.gov/api/citations/19930091991/downloads/19930091991.pdf
89.
Brentner
,
K. S.
, and
Farassat
,
F.
,
1998
, “
Analytical Comparison of the Acoustic Analogy and Kirchhoff Formulation for Moving Surfaces
,”
AIAA J.
,
36
(
8
), pp.
1379
1386
.10.2514/2.558
You do not currently have access to this content.