Abstract

The wall-modeled-large eddy simulation (WMLES) technique was used to analyze turbulent flow in a porous medium composed of a staggered arrangement of square cylinders. The study focused on a porosity range of 0.3–0.8 at a pore Reynolds number of 104. The research provides novel information on pressure and shear force distributions around the cylinders and time-averaged values of particle drag and fluctuating lift coefficients. Results indicate that flow physics are mainly driven by an expansion region in front of the central particle and another one in the rear, where the flow is contracted and strongly accelerated. In the first region, velocities, turbulence kinetic energy (k), and its dissipation rate (ε) are attenuated by a sudden pressure increase, while in the contraction region, the effect is the opposite. As porosity decreases, flow gradients and the overall levels of k, ε, and normalized Reynolds stresses become more significant. Turbulent anisotropy increases as porosity decreases below 0.6. Hydrodynamic stresses in the last interval present relatively uniform levels, which is a unique feature that may be considered in designing dedicated engineering devices with controlled stresses.

References

1.
Dybss
,
A.
, and
Edwards
,
R. W.
,
1984
, “
A New Look at Porous Media Fluid Mechanics -Darcy to Turbulent
,”
Fundamentals of Transport Phenomena in Porous Media, Proceedings of the NATO Advanced Study Institute on Mechanics of Fluids in Porous Media
,
J.
Bear
, and
Y.
Corapcioglu
, eds.,
Martinus Nijhoff Publishers
,
Delaware
, pp.
199
256
.
2.
Chen
,
J.
,
Liu
,
C.
,
Li
,
Y.
,
Huang
,
Y.
,
Yuan
,
X.
, and
Yu
,
G.
,
2007
, “
Experimental Investigation of Single-Phase Flow in Structured Packing by LDV
,”
Chin. J. Chem. Eng.
,
15
(
6
), pp.
821
827
.10.1016/S1004-9541(08)60009-9
3.
Daviero
,
G. J.
,
Roberts
,
P. J. W.
, and
Maile
,
K.
,
2001
, “
Refractive Index Matching in Large-Scale Stratified Experiments
,”
Exp. Fluids
,
31
(
2
), pp.
119
126
.10.1007/s003480000260
4.
Hassan
,
Y. A.
, and
Dominguez-Ontiveros
,
E. E.
,
2008
, “
Flow Visualization in a Pebble Bed Reactor Experiment Using PIV and Refractive Index Matching Techniques
,”
Nucl. Eng. Des.
,
238
(
11
), pp.
3080
3085
.10.1016/j.nucengdes.2008.01.027
5.
Khayamyan
,
S.
,
Lundström
,
T. S.
,
Gren
,
P.
,
Lycksam
,
H.
, and
Hellström
,
J. G. I.
,
2017
, “
Transitional and Turbulent Flow in a Bed of Spheres as Measured With Stereoscopic Particle Image Velocimetry
,”
Transp. Porous Media
,
117
(
1
), pp.
45
67
.10.1007/s11242-017-0819-y
6.
Jin
,
Y.
, and
Kuznetsov
,
A. V.
,
2017
, “
Turbulence Modeling for Flows in Wall Bounded Porous Media: An Analysis Based on Direct Numerical Simulations
,”
Phys. Fluids
,
29
(
4
), p.
045102
.10.1063/1.4979062
7.
Jin
,
Y.
,
Uth
,
M. F.
,
Kuznetsov
,
A. V.
, and
Herwig
,
H.
,
2015
, “
Numerical Investigation of the Possibility of Macroscopic Turbulence in Porous Media: A Direct Numerical Simulation Study
,”
J. Fluid Mech.
,
766
(
2
), pp.
76
103
.10.1017/jfm.2015.9
8.
Uth
,
M. F.
,
Jin
,
Y.
,
Kuznetsov
,
A. V.
, and
Herwig
,
H.
,
2016
, “
A Direct Numerical Simulation Study on the Possibility of Macroscopic Turbulence in Porous Media: Effects of Different Solid Matrix Geometries, Solid Boundaries, and Two Porosity Scales
,”
Phys. Fluids
,
28
(
6
), p.
065101
.10.1063/1.4949549
9.
Rasam
,
A.
,
Brethouwer
,
G.
,
Schlatter
,
P.
,
Li
,
Q.
, and
Johansson
,
A. V.
,
2011
, “
Effects of Modelling, Resolution and Anisotropy of Subgrid-Scales on Large Eddy Simulations of Channel Flow
,”
J. Turbul.
,
12
(
1
), pp.
N10
N19
.10.1080/14685248.2010.541920
10.
Kuwahara
,
F.
,
Yamane
,
T.
, and
Nakayama
,
A.
,
2006
, “
Large Eddy Simulation of Turbulent Flow in Porous Media
,”
Int. Commun. Heat Mass Transfer
,
33
(
4
), pp.
411
418
.10.1016/j.icheatmasstransfer.2005.12.011
11.
Kundu
,
P.
,
Kumar
,
V.
,
Hoarau
,
Y.
, and
Mishra
,
I. M.
,
2016
, “
Numerical Simulation and Analysis of Fluid Flow Hydrodynamics Through a Structured Array of Circular Cylinders Forming Porous Medium
,”
Appl. Math. Modell.
,
40
(
23–24
), pp.
9848
9871
.10.1016/j.apm.2016.06.043
12.
Shams
,
A.
,
Roelofs
,
F.
,
Komen
,
E. M. J.
, and
Baglietto
,
E.
,
2014
, “
Large Eddy Simulation of a Randomly Stacked Nuclear Pebble Bed
,”
Comput. Fluids
,
96
(
3
), pp.
302
321
.10.1016/j.compfluid.2014.03.025
13.
Alonzo-Garcia
,
A.
,
Mendoza-Rosas
,
A. T.
,
Díaz-Viera
,
M. A.
,
Martínez-Delgadillo
,
S. A.
, and
Martínez-Mendoza
,
E. G.
,
2021
, “
Assessment of Low-Re Turbulence Models and Analysis of Turbulent Flow in Porous Media Consisting of Square Cylinders With Different Diameter Ratios
,”
ASME J. Fluids Eng. Trans. ASME
,
143
(
1
), p.
011402
.10.1115/1.4048284
14.
Pedras
,
M. H. J.
, and
de Lemos
,
M. J. S.
,
2001
, “
Simulation of Turbulent Flow in Porous Media Using a Spatially Periodic Array and a Low Re Two-Equation Closure
,”
Numer. Heat Transfer, Part A
,
39
(
1
), pp.
35
59
.10.1080/104077801458456
15.
Kundu
,
P.
,
Kumar
,
V.
, and
Mishra
,
I. M.
,
2014
, “
Numerical Modeling of Turbulent Flow Through Isotropic Porous Media
,”
Int. J. Heat Mass Transfer
,
75
(
4
), pp.
40
57
.10.1016/j.ijheatmasstransfer.2014.03.020
16.
Nakayama
,
A.
, and
Kuwahara
,
F.
,
1999
, “
A Macroscopic Turbulence Model for Flow in a Porous Medium
,”
ASME J. Fluids Eng.
,
121
(
2
), pp.
427
433
.10.1115/1.2822227
17.
González-Neria
,
I.
,
Yáñez-Varela
,
J. A.
,
Martínez-Delgadillo
,
S. A.
,
Rivadeneyra-Romero
,
G.
, and
Alonzo-Garcia
,
A.
,
2021
, “
Analysis of the Turbulent Flow Patterns Generated in Isotropic Porous Media Composed of Aligned or Centered Cylinders
,”
Int. J. Mech. Sci.
,
199
(
3
), p.
106396
.10.1016/j.ijmecsci.2021.106396
18.
Pedras
,
M. H. J.
, and
de Lemos
,
M. J. S.
,
2001
, “
On the Mathematical Description and Simulation of Turbulent Flow in a Porous Medium Formed by an Array of Elliptic Rods
,”
ASME J. Fluids Eng. Trans. ASME
,
123
(
4
), pp.
941
947
.10.1115/1.1413244
19.
Yang
,
J.
,
Zhou
,
M.
,
Li
,
S. Y.
,
Bu
,
S. S.
, and
Wang
,
Q. W.
,
2014
, “
Three-Dimensional Numerical Analysis of Turbulent Flow in Porous Media Formed by Periodic Arrays of Cubic, Spherical, or Ellipsoidal Particles
,”
ASME J. Fluids Eng. Trans. ASME
,
136
(
1
), p.
011102
.10.1115/1.4025365
20.
Celik
,
I. B.
,
Cehreli
,
Z. N.
, and
Yavuz
,
I.
,
2005
, “
Index of Resolution Quality for Large Eddy Simulations
,”
ASME J. Fluids Eng.
,
127
(
5
), pp.
949
958
.10.1115/1.1990201
21.
Ahmed
,
H. E.
,
Salman
,
B. H.
,
Kherbeet
,
A. S.
, and
Ahmed
,
M. I.
,
2018
, “
Optimization of Thermal Design of Heat Sinks: A Review
,”
Int. J. Heat Mass Transfer
,
118
, pp.
129
153
.10.1016/j.ijheatmasstransfer.2017.10.099
22.
Kashevskii
,
B. E.
,
2005
, “
Magnetophoretic Properties of a Volume-Ordered System of Rectangular Ferrocylinders
,”
J. Eng. Phys. Thermophys.
,
78
(
3
), pp.
455
462
.10.1007/s10891-005-0081-y
23.
Allard
,
J. F.
, and
Atalla
,
N.
,
2009
,
Propagation of Sound in Porous Media: Modelling Sound Absorbing Materials
,
Wiley, Inc
.,
New Jersey
.
24.
Seol
,
C.
,
Hong
,
J.
, and
Kim
,
T.
,
2023
, “
Flow Around Porous Square Cylinders With a Periodic and Scalable Structure
,”
Exp. Therm. Fluid Sci.
,
144
(
9
), p.
110864
.10.1016/j.expthermflusci.2023.110864
25.
Wood
,
B. D.
,
He
,
X.
, and
Apte
,
S. V.
,
2020
, “
Modeling Turbulent Flows in Porous Media
,”
Annu. Rev. Fluid Mech.
,
52
(
1
), pp.
171
203
.10.1146/annurev-fluid-010719-060317
26.
Ansys
,
2013
,
Fluent Theory Guide
,
ANSYS Inc
., Canonsburg, PA, Vol.
15317
, pp.
724
746
.
27.
Shur
,
M. L.
,
Spalart
,
P. R.
,
Strelets
,
M. K.
, and
Travin
,
A. K.
,
2008
, “
A Hybrid RANS-LES Approach With Delayed-DES and Wall-Modelled LES Capabilities
,”
Int. J. Heat Fluid Flow
,
29
(
6
), pp.
1638
1649
.10.1016/j.ijheatfluidflow.2008.07.001
28.
Kuwata
,
Y.
, and
Suga
,
K.
,
2015
, “
Large Eddy Simulations of Pore-Scale Turbulent Flows in Porous Media by the Lattice Boltzmann Method
,”
Int. J. Heat Fluid Flow
,
55
(
6
), pp.
143
157
.10.1016/j.ijheatfluidflow.2015.05.015
29.
Çengel
,
Y. A.
, and
Cimbala
,
J. M.
,
2020
,
Fluid Mechanics Fundamentals and Applications
,
McGraw-Hill
,
New York
.
30.
Yoshizawa
,
A.
, and
Horiuti
,
K.
,
1985
, “
A Statistically-Derived Subgrid-Scale Kinetic Energy Model for the Large-Eddy Simulation of Turbulent Flows
,”
J. Phys. Soc. Jpn.
,
54
(
8
), pp.
2834
2839
.10.1143/JPSJ.54.2834
31.
Lam
,
C. K. G.
, and
Bremhorst
,
K.
,
1981
, “
A Modified Form of the K-ɛ Model for Predicting Wall Turbulence
,”
ASME J. Fluids Eng.
,
103
(
3
), pp.
456
460
.10.1115/1.3240815
32.
Yen
,
S. C.
,
Wu
,
S. F.
, and
San
,
K. C.
,
2016
, “
Modulation of Wake Flow and Aerodynamic Behaviors Around a Square Cylinder Using an Upstream Control Bar
,”
Exp. Therm. Fluid Sci.
,
70
(
9
), pp.
139
147
.10.1016/j.expthermflusci.2015.09.009
33.
Bäbler
,
M. U.
,
Morbidelli
,
M.
, and
Bałdyga
,
J.
,
2008
, “
Modelling the Breakup of Solid Aggregates in Turbulent Flows
,”
J. Fluid Mech.
,
612
(
6
), pp.
261
289
.10.1017/S002211200800298X
34.
Wyrobnik
,
T. A.
,
Ducci
,
A.
, and
Micheletti
,
M.
,
2020
, “
Advances in Human Mesenchymal Stromal Cell-Based Therapies – Towards an Integrated Biological and Engineering Approach
,”
Stem Cell Res.
,
47
(
7
), p.
101888
.10.1016/j.scr.2020.101888
35.
Sun
,
R.
,
Yu
,
P.
,
Zuo
,
P.
, and
Alvarez
,
P. J. J.
,
2022
, “
Bacterial Concentrations and Water Turbulence Influence the Importance of Conjugation Versus Phage-Mediated Antibiotic Resistance Gene Transfer in Suspended Growth Systems
,”
ACS Environ. Au
,
2
(
2
), pp.
156
165
.10.1021/acsenvironau.1c00027
36.
Jeong
,
J.
, and
Hussain
,
F.
,
1995
, “
On the Identification of a Vortex
,”
J. Fluid Mech.
,
285
(
7
), pp.
69
94
.10.1017/S0022112095000462
You do not currently have access to this content.