A wave rotor is proposed for use as a constant volume combustor. A novel design feature is investigated as a remedy for hot gas leakage, premature ignition, and pollutant emissions that are possible in this class of unsteady machines. The base geometry involves fuel injection partitions that allow stratification of fuel/oxidizer mixtures in the wave rotor channel radially, enabling pilot ignition of overall lean mixture for low NOx combustion. In this study, available turbulent combustion models are applied to simulate approximately constant volume combustion of propane and resulting transient compressible flow. Thermal NO production histories are predicted by simulations of the STAR-CD code. Passage inlet/outlet/wall boundary conditions are time-dependent, enabling the representation of a typical deflagrative internal combustor wave rotor cycle. Some practical design improvements are anticipated from the computational results. For a large number of derivative design configurations, fuel burn rate, two-dimensional flow and emission levels are evaluated. The sensitivity of channel combustion to initial turbulence levels is evaluated.

1.
Welch
,
G. E.
,
Jones
,
S. M.
, and
Paxson
,
D. E.
,
1997
, “
Wave Rotor Enhanced Gas Turbine Engines
,”
ASME J. Eng. Gas Turbines Power
,
119
(
2
), p.
469
469
.
2.
Nalim, M. R., 1994, “Wave Cycle Design for Wave Rotor Engines with Limited Nitrogen Oxide Emissions,” Ph.D. thesis, Cornell University, Ithaca, NY.
3.
Paxson, D. E., 1995, “A Numerical Model for Dynamic Wave Rotor Analysis,” AIAA Paper No. 95-2800.
4.
Nalim, M. R., 1997, “Numerical Study of Stratified Charge Combustion in Wave Rotors,” AIAA Paper No. 97-3141.
5.
Wilson
,
J.
, and
Paxson
,
D. E.
,
1996
, “
Wave Rotor Optimization for Gas Turbine Engine Topping Cycles
,”
J. Propul. Power
,
12
(
4
), pp.
778
785
.
6.
Welch, G. E., 1996, “Two-Dimensional Computational Model for Wave Rotor Flow Dynamics,” Paper No. NASA TM-107192.
7.
Larosiliere
,
L. M.
,
1995
, “
Wave Rotor Charging Process: Effects of Gradual Opening and Rotation
,”
J. Propul. Power
,
11
(
1
), pp.
178
184
.
8.
Nalim
,
M. R.
,
1999
, “
Assessment of Combustion Modes for Internal Combustion Wave Rotors
,”
ASME J. Eng. Gas Turbines Power
,
121
(
2
), pp.
265
271
.
9.
Nalim
,
M. R.
,
2000
, “
Longitudinally Stratified Combustion in Wave Rotors
,”
J. Propul. Power
,
16
(
3
), pp.
1060
1068
.
10.
Bilgin, M., Keller, J. J., and Breidental, R. E., 1998, “Ignition and Flame Propagation Process With Rotating Hot Jets in a Simulated Wave Engine Test Cell,” AIAA Paper No. 98-3399.
11.
Paxson, D. E., 1993, “A Comparison Between Numerically Modeled and Experimentally Measured Loss Mechanisms in Wave Rotors,” Paper No. AIAA-93-2522.
12.
Jones, S. M., and Welch, C., 1996, “Performance Benefits for Wave Rotor Topped Gas Turbine Engines,” Paper No. NASA TM-107193.
13.
Paxson, D. E., 1996, “A Numerical Investigation of the Start-Up Transient in a Wave Rotor,” Paper No. NASA TM-107196.
14.
Paxson
,
D. E.
,
1996
, “
Numerical Simulation of Dynamic Wave Rotor Performance
,”
J. Propul. Power
,
12
(
5
), pp.
949
957
.
15.
Kentfield, J. A. C., 1998, “Circumferential Wave Dividers in Wave-Rotors,” Paper No. AIAA-98-3397.
16.
Freitas
,
C. J.
,
1995
, “
Perspective: Selected Benchmarks From Commercial CFD Codes
,”
ASME J. Fluids Eng.
,
117
, pp.
208
218
.
17.
Patankar
,
S. V.
, and
Spalding
,
D. B.
,
1972
, “
A Calculation Procedure for Heat Mass and Momentum Transfer in Three Dimensional Parabolic Flows
,”
Int. J. Heat Mass Transfer
,
15
, pp.
1787
1806
.
18.
Issa
,
R. I.
,
1986
, “
Solution of the Implicitly Discretised Fluid Flow Equations by Operator Splitting
,”
J. Comput. Phys.
,
62
, pp.
40
65
.
19.
Abraham
,
J.
,
Bracco
,
F. V.
, and
Reitz
,
R. D.
,
1985
, “
Comparisons of Computed and Measured Premixed Charge Engine Combustion
,”
Combust. Flame
,
60
, pp.
309
322
.
20.
Gran
,
I. R.
,
Ertesvag
,
I. S.
, and
Magnussen
,
B. F.
,
1997
, “
Influence of Turbulence Modeling on Predictions of Turbulent Combustion
,”
AIAA J.
,
35
(
1
), pp.
106
110
.
21.
Abraham, et al., 1988, “Pressure Non-uniformity and Mixing Characteristics in Stratified Charge Rotary Engine Combustion,” SAE Technical Paper No. 880624.
22.
El Tahry
,
S. H.
,
1983
, “
k-ε Equation For Compressible Reciprocating Engine Flows
,”
J. Energy
,
4
, pp.
345
353
.
23.
Launder
,
B. E.
, and
Spalding
,
D. B.
,
1974
, “
The Numerical Computation of Turbulent Flow
,”
Comput. Methods Appl. Mech. Eng.
,
3
, p.
269
269
.
24.
Magnussen, B. F., and Hjertager, B. H., 1976, “On Mathematical Modeling of Turbulent Combustion With Special Emphasis on Soot Formation and Combustion,” 16th Symposium on Combustion, The Combustion Institute, Pittsburgh, PA, pp. 719–729.
25.
Hjertager
,
B. H.
,
1982
, “
Simulation of Transient Compressible Turbulent Reactive Flows
,”
Combust. Sci. Technol.
,
27
, pp.
159
170
.
26.
Pope, S. B., 1990, “Computations of Turbulent Combustion: Progress and Challenges,” 23rd Symposium on Combustion, The Combustion Institute, Pittsburgh, PA.
27.
Versteeg, H. K., and Malalasekera, W., 1995, An Introduction to Computational Fluid Dynamics—The Finite Volume Method, Longman, London.
28.
Tabaczynski
,
R. J.
,
1976
, “
Turbulence and Turbulent Combustion in Spark Ignition Engines
,”
Prog. Energy Combust. Sci.
,
2
, pp.
143
165
.
29.
Nalim, R. M., and Jules, K., 1998, “Pulse Combustion and Wave Rotors for High-Speed Propulsion Engines,” Paper No. AIAA-98-1614.
30.
Lau
,
J. H. W.
,
1995
, “
Comparison of PDF and Eddy-Dissipation Combustion Models Applied to a Propane Jet Flame
,”
Combust. Flame
,
102
, pp.
209
215
.
31.
Libby, P. A., and Williams, F. A., 1980, “Turbulent Reacting Flows,” Topics in Applied Physics, Vol. 44, Springer-Verlag, New York.
32.
Raju, M. S., 1992, “Heat Transfer and Performance Characteristics of a Dual-Ignition Wankel Engine,” SAE Technical Paper No. 920303.
33.
Catlin
,
C. A.
,
Fairwheather
,
M.
, and
Ibrahim
,
S. S.
,
1995
, “
Predictions of Turbulent, Premixed Flame Propagation in Explosion Tubes
,”
Combust. Flame
,
102
, pp.
115
128
.
34.
Kuo, T. W., and Reitz, R. D., 1989, “Computation of Premixed-Charge Combustion in Pancake and Pent-Roof Engines,” SAE Technical Paper No. 890670.
35.
Kong, S., Han, Z., and Reitz, R. D., 1995, “The Development and Application of a Diesel Ignition and Combustion Model for Multidimensional Engine Simulations,” SAE Technical Paper No. 950278.
36.
Spalding, D. B., 1971, “Mixing and Chemical Reaction in Steady Confined Turbulent Flames,” 13th Symposium on Combustion, The Combustion Institute, Pittsburgh, PA.
37.
Brizuela
,
E. A.
, and
Bilger
,
R. W.
,
1996
, “
On the Eddy Break-up Coefficient
,”
Combust. Flame
,
104
, pp.
208
212
.
38.
Hulek
,
T.
, and
Lindstedt
,
R. P.
,
1996
, “
Computations of Steady-State and Transient Premixed Turbulent Flames Using PDF Methods
,”
Combust. Flame
,
104
, pp.
481
504
.
39.
Westbrook
,
C. K.
, and
Dryer
,
F. L.
,
1981
, “
Simplified Reaction Mechanisms for the Oxidation of Hydrocarbon Fuels in Flames
,”
Combust. Sci. Technol.
,
27
, pp.
31
43
.
40.
Kuo, T., 1992, “Multidimensional Port-and-Cylinder Gas Flow, Fuel Spray, and Combustion Calculations for a Port-Fuel-Injection Engine,” SAE Technical Paper No. 920515.
41.
Nalim, M. R., Moscari, J. C., and Resler, L., 1993, “Wave Cycle Design for NOx Limited Wave Rotor Core Engines for High Speed Propulsion,” ASME Paper No. 93-GT-426.
42.
Flowers, W. L., Hanson, R. K., and Kruger, C. H., 1975, “Kinetics of the Reaction of Nitric Oxide with Hydrogen,” 15th Symposium on Combustion, The Combustion Institute, Pittsburgh, PA, p. 823.
43.
Monat, J. P., Hanson, R. K., and Kruger, C. H., 1979, “Shock Tube Determination of the Rate Coefficient for the Reaction N2+O→NO+O,17th Symposium on Combustion, The Combustion Institute, Pittsburgh, PA, p. 543.
44.
Zeldovich, B., and Raizer, P., 1966, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, Vol. 1, Academic Press, San Diego, CA.
45.
Nalim, M. R., 1985, “NOx Control in Natural Gas Engines Using Exhaust Gas Recirculation,” M. Sc. thesis, Cornell University, Ithaca, NY.
46.
Hessel
,
R. P.
, and
Ruthland
,
C. J.
,
1995
, “
Intake Flow Modeling in a Four-Stroke Diesel Using KIVA-3
,”
J. Propul. Power
,
11
(
2
), pp.
378
384
.
47.
Kong, S., Han, Z., and Reitz, R. D., 1995, “The Development and Application of a Diesel Ignition and Combustion Model for Multidimensional Engine Simulations,” SAE Technical Paper No. 950278.
48.
Lefebvre, H. A., 1999, Gas Turbine Combustion, Taylor and Francis, London.
49.
Correa
,
S. M.
,
1992
, “
A Review of NOx Formation Under Gas Turbine Combustion Conditions
,”
Combust. Sci. Technol.
,
87
, pp.
329
362
.
50.
Pekkan, K., and Nalim, R., 2002, “On Alternative Models for Internal Combustor Wave Rotor Simulation,” Spring Technical Meeting of the Central States Section, Knoxville, TN.
51.
Pekkan, K., and Nalim, R., 2002, “Control of Fuel and Hot-Gas Leakage in a Stratified Internal Combustion Wave Rotor,” Paper No. AIAA-2002-4067.
You do not currently have access to this content.