Abstract

The unsteady heat transfer measurements about a transonic turbine blade at engine representative Mach and Reynolds numbers are presented. High density, fast-response thin film gauges are employed at the midheight streamline. A description of the novel development of gold gauges together with a brief overview of their calibration and signal processing is presented. Detailed time and phase-averaged measurements have been obtained, providing insight into the role of upstream nozzle guide vane (NGV) wakes and shock features. These heat transfer results compliment recent fast-response aerodynamic results on this and similar transonic profiles, which highlight the dominance of the upstream vane-rotor interaction over convected wake segments, particularly in light of unsteady turbine blade loading. From a heat transfer standpoint, however, while the periodic shock events contributed to abrupt, localized heat transfer enhancements, the influence of NGV wake segments on the boundary layer could not be discounted when duration of unsteadiness was considered.

References

1.
Dunn
,
M. G.
, 2001, “
Convective Heat Transfer and Aerodynamics in Axial Flow Turbines
,”
ASME J. Turbomach.
0889-504X,
123
(
4
), pp.
637
686
.
2.
Schultz
,
D. L.
, and
Jones
,
T. V.
, 1973, “
Heat Transfer Measurements in Short-Duration Hypersonic Facilities
,” AGARDograph No.165.
3.
Ainsworth
,
R. W.
,
Schultz
,
D. I.
,
Davies
,
M. R. D.
,
Forth
,
C. J. P.
,
Hilditch
,
M. A.
,
Oldfield
,
M. L. G.
, and
Sheard
,
A. G.
, 1988, “
A Transient Flow Facility for the Study of Thermofluid Dynamics Under Engine Representative Conditions
,” ASME Paper No. 88-GT-144.
4.
Meyer
,
R. N.
, 1957, “
The Effect of Wakes on the Transient Pressure and Velocity Distributions in Turbomachines
,” ASME Paper No. 57-A-83.
5.
Doorly
,
D. J.
, and
Oldfield
,
M. L. G.
, 1985, “
Simulation of Wake Passing in a Stationary Turbine Rotor Cascade
,”
J. Propul. Power
0748-4658,
1
(
4
), pp.
316
318
.
6.
Doorly
,
D. J.
, and
Oldfield
,
M. L. G.
, 1985, “
Simulation of the Effects of Shock Wave Passing on a Turbine Rotor Blade
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
107
, pp.
998
1006
.
7.
Doorly
,
D. J.
,
Oldfield
,
M. L. G.
, and
Schrivener
,
C. T. J.
, 1985, “
Wake-Passing in a Turbine Rotor Cascade
,” Report No. AGARD CP-390.
8.
Hodson
,
H. P.
, 1984, “
Boundary Layer and Loss Measurements on the Rotor of an Axial Flow Turbine
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
106
, pp.
391
399
.
9.
Mayle
,
R. E.
, and
Dullenkopf
,
K.
, 1989, “
A Theory for Wake-Induced Transition
,” ASME Paper No. 89-GT-57.
10.
Mayle
,
R. E.
, and
Dullenkopf
,
K.
, 1990, “
More on the Turbulent Strip Theory for Wake-Induced Transition
,” ASME Paper No. 90-GT-137.
11.
Johnson
,
A. B.
,
Rigby
,
M. J.
,
Oldfield
,
M. L. G.
,
Ainsworth
,
R. W.
, and
Oliver
,
M. J.
, 1988, “
Surface Heat Transfer Fluctuations on a Turbine Rotor Blade Due to Upstream Shock Wave Passing
,” ASME Paper No. 88-GT-172.
12.
Johnson
,
A. B.
,
Oldfield
,
M. L. G.
,
Rigby
,
M. J.
, and
Giles
,
M. B.
, 1990, “
Nozzle Guide Vane Shock Wave Propagation and Bifurcation in a Transonic Turbine Rotor
,” ASME Paper No. 90-GT-310.
13.
Jones
,
T. V.
, 1988, “
Gas Turbine Studies at Oxford 1969–1987
,” ASME Paper No. 88-GT-112.
Jones
,
T. V.
,
Schultz
,
D. L.
, and
Hendley
,
A. D.
, 1973, “
On the Flow in an Isentropic Light Piston Tunnel
,” ARC, Reports and Memoranda No. 3731.
14.
Herzig
,
H. Z.
,
Hansen
,
A. G.
, and
Costello
,
G. R.
, 1953, “
A Visualization Study of Secondary Flows in Cascades
,” NACA Report No. 1163.
15.
Langston
,
L. S.
, 1980, “
Crossflows in a Turbine Cascade Passage
,” ASME Paper No. 80-GT-5.
16.
Graziani
,
R. A.
,
Blair
,
M. F.
,
Taylor
,
J. R.
, and
Mayle
,
R. E.
, 1980, “
An Experimental Study of Endwall and Airfoil Surface Heat Transfer in a Large Scale Turbine Blade Cascade
,”
ASME J. Eng. Power
0022-0825,
102
, pp.
257
267
.
17.
Hebert
,
G. J.
, and
Tiederman
,
W. G.
, 1989, “
Comparison of Steady and Unsteady Secondary Flows in a Turbine Stator Cascade
,” ASME Paper No. 89-GT-79.
18.
Sieverding
,
C. H.
, 1985, “
Recent Progress in the Understanding of Basic Aspects of Secondary Flows in Turbine Blade Passages
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
107
, pp.
248
257
.
19.
Binder
,
A.
, 1985, “
Turbulence Production Due to Secondary Vortex Cutting in a Turbine Rotor
,” ASME Paper No. 85-GT-193.
20.
Binder
,
A.
,
Forster
,
W.
,
Mach
,
K.
, and
Rogge
,
H.
, 1986, “
Unsteady Flow Interaction Caused the Stator Secondary Vortices in a Turbine Rotor
,” ASME Paper No. 86-GT-302.
21.
Guenette
,
G. R.
,
Epstein
,
A. R.
,
Giles
,
M. B.
,
Haimes
,
R.
, and
Norton
,
R. J. G.
, 1989, “
Fully Scaled Transonic Turbine Rotor Heat Transfer Measurements
,”
ASME J. Turbomach.
0889-504X,
111
, pp.
1
7
.
22.
Dunn
,
M. G.
, 1986, “
Heat Flux Measurements for the Rotor of a Full-Stage Turbine: Part 1: Time Averaged Results
,” ASME Paper No. 86-GT-77.
23.
Dunn
,
M. G.
, 1989, “
Phase and Time-Resolved Measurements of Unsteady Heat Transfer and Pressure in a Full-Stage Rotating Turbine
,” ASME Paper No. 89-GT-135.
24.
Haldeman
,
C. W.
, and
Dunn
,
M. G.
, 2003, “
Heat Transfer Measurements and Predictions for the Vane and Blade of a Rotating High-Pressure Turbine Stage
,” ASME Paper No. GT2003-38726.
25.
Dunn
,
M. G.
,
Haldemann
,
R. S.
,
Abhari
,
R. S.
, and
McMillan
,
M. L.
, 2000, “
Influence of Vane/Blade Spacing on the Heat Flux for a Transonic Turbine
,”
ASME J. Turbomach.
0889-504X,
122
(
4
), pp.
684
691
.
26.
Didier
,
F.
,
Denos
,
R.
, and
Arts
,
T.
, 2002, “
Unsteady Rotor Heat Transfer in a Transonic Turbine Stage
,”
ASME J. Turbomach.
0889-504X,
124
(
4
), pp.
614
622
.
27.
Denos
,
R.
,
Arts
,
T.
,
Paniagua
,
G.
,
Michelassi
,
V.
, and
Martelli
,
F.
, 2001, “
Investigation of the Unsteady Rotor Aerodynamics in a Transonic Turbine Stage
,”
ASME J. Turbomach.
0889-504X,
123
(
1
), pp.
81
89
.
28.
Miller
,
R. J.
,
Moss
,
R. W.
,
Ainsworth
,
R. W.
, and
Harvey
,
N. W.
, 2003, “
Wake, Shock and Potential Field Interactions in a 1.5 Stage Turbine: Part I: Vane-Rotor and Rotor Vane Interaction
,”
ASME J. Turbomach.
0889-504X,
125
(
1
), pp.
33
39
.
29.
Wesner
,
A.
,
Schetz
,
J. A.
, and
Grabowski
,
H.
, 1999, “
Interferometric Study of Unsteady Passing Shock Flow in a Turbine Cascade
,”
J. Propul. Power
0748-4658,
15
(
4
), pp.
489
496
.
30.
Schultz
,
D. L.
,
Jones
,
T. V.
,
Oldfield
,
M. L. G.
, and
Daniels
,
L. C.
, 1977, “
A New Transient Cascade Facility for the Measurement of Heat Transfer Rates
,” Report No. AGARD CP-229.
31.
Horton
,
F. G.
,
Schultz
,
D. L.
, and
Forest
,
A. E.
, 1985, “
Heat Transfer Measurements With Film Cooling on a Turbine Blade Profile in Cascade
,” ASME Paper No. 85-GT-117.
32.
Hilditch
,
M. A.
, and
Ainsworth
,
R. W.
, 1990, “
Unsteady Heat Transfer Measurements on a Rotating Gas Turbine Blade
,” ASME Paper No. 90-GT-175.
33.
Ainsworth
,
R. W.
,
Allen
,
J. L.
,
Davies
,
M. R. D.
,
Doorly
,
J. E.
,
Forth
,
C. J. P.
,
Hilditch
,
M. A.
,
Oldfield
,
M. L. G.
, and
Sheard
,
A. G.
, 1989, “
Developments in Instrumentation and Processing for Transient Heat Transfer Measurement in a Full Stage Model Turbine
,”
ASME J. Turbomach.
0889-504X,
111
, pp.
20
27
.
34.
Sheard
,
A. G.
, and
Ainsworth
,
R. W.
, 1990, “
The Aerodynamic and Mechanical Performance of a High Pressure Turbine Stage in a Transient Wind Tunnel
,” ASME Paper No. 90-GT-353.
35.
Hilditch
,
M. A.
, 1989, “
Unsteady Heat Transfer Measurements in a Rotating Gas Turbine Stage
,” Ph.D. thesis, Oxford University, Oxford.
36.
Allan
,
W. D. E.
, 1990, “
Heat Transfer and Instrumentation Studies on Rotating Turbine Blades in a Transient Facility
,” Ph.D. thesis, University of Oxford, Oxford.
37.
Nicholson
,
J. H.
,
Forest
,
A. E.
,
Oldfield
,
M. L. G.
, and
Schultz
,
D. L.
, 1984, “
Heat Transfer Optimized Turbine Rotor Blades—An Experimental Study Using Transient Techniques
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
106
, pp.
173
182
.
You do not currently have access to this content.