The purpose of this work is to establish the maximum theoretical efficiency that a viscous flow turbine (such as a Tesla turbine) can achieve. This is very much in the spirit of the Betz limit for wind turbines. The scaling down of viscous flow turbines is thought not to alter this result, whereas the scaling down of conventional turbines, whether axial or radial flow, results in an ever lowering of their efficiencies. A semiempirical scaling law is developed for conventional gas turbines using published machine performance data, which is fitted to a simple boundary layer model of turbine efficiency. An analytical model is developed for a viscous flow turbine. This is compared to experimental measurements of the efficiency of a Tesla turbine using compressed air. The semiempirical scaling law predicts that below a rotor diameter of between about 11mm and 4mm, a practical Brayton cycle is not possible. Despite that, however, and for rotor diameters less than between about 7mm and 2mm, a viscous flow turbine, compressor, or pump will be more efficient than a conventional design. This may have a significant impact on the design of microelectromechanical system devices.

1.
Marden
,
J. H.
, and
Allen
,
L. R.
, 2002, “
Molecules, Muscles, and Machines: Universal Performance Characteristics of Motors
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
99
(
7
), pp.
4161
4166
.
2.
Wang
,
Z. J.
, 2005, “
Dissecting Insect Flight
,”
Annu. Rev. Fluid Mech.
0066-4189,
37
, pp.
183
210
.
3.
Denton
,
J. D.
, 1993, “
Loss Mechanisms In Turbomachines
,”
ASME J. Turbomach.
0889-504X,
115
(
4
), pp.
621
656
.
5.
6.
Martens
,
T.
, 2004, “
Model Turbine Specification List
,” http://www.airtoi.nl/turbines.php3http://www.airtoi.nl/turbines.php3
7.
Dixon
,
S. L.
, 1998,
Fluid Mechanics and Thermodynamics of Turbomachinery
,
Butterworth-Heinemann
.
8.
Decher
,
R.
, 1994,
Energy Conversion: Systems, Flow Physics and Engineering
,
Oxford University Press
,
New York
.
9.
McAdams
,
W. H.
, and 1954,
Heat Transmission
,
McGraw-Hill
,
New York
.
10.
Shan
,
X. C.
,
Wang
,
Z. F.
,
Jin
,
Y. F.
,
Wu
,
M.
,
Hua
,
J.
,
Wong
,
C. K.
, and
Maeda
,
R.
, 2005, “
Studies on a Micro Combustor for Gas Turbine Engines
,”
J. Micromech. Microeng.
0960-1317,
15
(
9
), pp.
215
221
.
11.
Schlichting
,
H.
, 1979,
Boundary-Layer Theory
,
McGraw-Hill
,
New York
.
12.
Gerendás
,
M. P. R.
, 2000, “
Development of a Very Small Aero-Engine
,”
45th ASME International Gas Turbine and Aeroengine Technical Congress and Exposition
,
Munich, Germany
.
13.
Epstein
,
A. H.
, 2004, “
Millimeter-Scale, Micro-Electro-Mechanical Systems Gas Turbine Engines
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
126
(
2
), pp.
205
226
.
14.
Mason
,
L. S.
,
Shaltens
,
R. K.
,
Dolce
,
J. L.
, and
Cataldo
,
R. L.
, 2002, “
Status of Brayton Cycle Power Conversion Development at NASA GRC
,” Space Technology and Applications International Forum (STAIF-2002) sponsored by the American Institute of Aeronautics and Astronautics Albuquerque, NM.
15.
Shaltens
,
R. K.
, and
Mason
,
L. S.
, 1999, “
800 Hours of Operational Experience From a 2kWe Solar Dynamic System
,” Space Technology and Applications International Forum Albuquerque, NM.
16.
Shaltens
,
R. K.
,
Boyle
,
R. V.
, 1995, “
Initial Results From the Solar Dynamic (SD) Ground Test Demonstration (GTD) Project at NASA Lewis
,”
30th Intersociety Energy Conversion Engineering Conference
,
Orlando, FL
.
18.
Johnson
,
P. K.
, and
Mason
,
L. S.
, 2006, “
Performance and Operational Characteristics for a Dual Brayton Space Power System With Common Gas Inventory
,”
The Fourth International Energy Conversion Engineering Conference and Exhibit (IECEC)
,
San Diego
,
CA
.
19.
Johnson
,
P. K.
, 2006, “
A Method for Calculating Viscosity and Thermal Conductivity of a Helium-Xenon Gas Mixture
,” Paper No. NASA CR-2006–214394.
20.
Rice
,
W.
, 1965, “
An Analytical and Experimental Investigation of Multiple-Disk Turbines
,”
ASME J. Eng. Power
0022-0825,
87
, pp.
29
36
.
21.
Muller
,
N.
, and
Frechette
,
L. G.
, 2002, “
Performance Analysis of Brayton and Rankine Cycle Microsystems for Portable Power Generation
,” American Society of Mechanical Engineers, New Orleans, LO, pp.
513
522
.
22.
Jacobson
,
S. A.
,
Epstein
,
A. H.
, 2003, “
An Informal Survey of Power MEMS
,”
The International Symposium on Micro-Mechanical Engineering
, Tsuchiura, Japan.
23.
Yagoub
,
W.
,
Doherty
,
P.
, and
Riffat
,
S. B.
, 2006, “
Solar Energy-Gas Driven Micro-CHP System for an Office Building
,”
Appl. Therm. Eng.
1359-4311,
26
(
14–15
), pp.
1604
1610
.
24.
Peirs
,
J.
,
Reynaerts
,
D.
, and
Verplaetsen
,
F.
, 2003, “
Development of an Axial Microturbine for a Portable Gas Turbine Generator
,”
J. Micromech. Microeng.
0960-1317,
13
(
4
), pp.
190
195
.
25.
Peirs
,
J.
,
Reynaerts
,
D.
, and
Verplaetsen
,
F.
, 2004, “
A Microturbine for Electric Power Generation
,”
Sens. Actuators, A
0924-4247,
113
(
1
), pp.
86
93
.
26.
Isomura
,
K.
,
Murayama
,
M.
,
Yamaguchi
,
H.
,
Ijichi
,
N.
, and
Kawakubo
,
T.
, 2002, “
Feasibility Study of a Micromachine Gas Turbine
,”
Ishikawajima-Harima Eng. Rev.
0578-7904,
42
(
3
), pp.
177
183
.
27.
Fréchette
,
L. G.
,
Lee
,
C.
,
Arslan
,
S.
,
Liu
,
Y. C.
, 2003, “
Preliminary Design of a MEMS Steam Turbine Power Plant on-a-Chip
,”
Third International Workshop on Micro & Nano Tech. for Power Generation & Energy Conv. (PowerMEMS’03)
,
Makuhari, Japan
.
28.
Sirakov
,
B. T.
, 2005, “
Characterization and Design of Non-Adiabatic Micro-Compressor Impeller and Preliminary Design of Self-Sustained Micro Engine System
,” Massachusetts Institute of Technology.
You do not currently have access to this content.