Spark assist appears to offer considerable potential for increasing the speed and load range over which homogeneous charge compression ignition (HCCI) is possible in gasoline engines. Numerous experimental studies of the transition between conventional spark-ignited (SI) propagating-flame combustion and HCCI combustion in gasoline engines with spark assist have demonstrated a high degree of deterministic coupling between successive combustion events. Analysis of this coupling suggests that the transition between SI and HCCI can be described as a sequence of bifurcations in a low-dimensional dynamic map. In this paper, we describe methods for utilizing the deterministic relationship between cycles to extract global kinetic rate parameters that can be used to discriminate multiple distinct combustion states and develop a more quantitative understanding of the SI-HCCI transition. We demonstrate the application of these methods for indolene-containing fuels and point out an apparent HCCI mode switching not previously reported. Our results have specific implications for developing dynamic combustion models and feedback control strategies that utilize spark assist to expand the operating range of HCCI combustion.

1.
Zhao
,
F.
,
Assanis
,
D. N.
,
Najt
,
P. M.
,
Dec
,
J. E.
,
Eng
,
J. A.
, and
Asmus
,
T. N.
, 2003,
Homogeneous Charge Compression Ignition (HCCI) Engines: Key Research and Development Issues
,
SAE International
,
Warrendale, PA
.
2.
Heywood
,
J. B.
, 1988,
Internal Combustion Engine Fundamentals
,
McGraw-Hill
,
New York
.
3.
Shaver
,
G. M.
,
Gerdes
,
J. C.
,
Jain
,
P.
,
Caton
,
P. A.
, and
Edwards
,
C. F.
, 2003, “
Modeling for Control of HCCI Engines
,”
Proceedings of the American Control Conference
, Vol.
1
, pp.
749
754
.
4.
Caton
,
P. A.
,
Simon
,
A. J.
,
Gerdes
,
J. C.
, and
Edwards
,
C. F.
, 2003, “
Residual-Effected Homogeneous Charge Compression Ignition at Low Compression Ratio Using Exhaust Reinduction
,”
Int. J. Engine Res.
1468-0874,
4
(
3
), pp.
163
177
.
5.
Urushihara
,
T.
,
Hiraya
,
K.
,
Kakuhou
,
A.
, and
Itoh
,
T.
, 2003, “
Expansion of HCCI Operating Region by the Combination of Direct Fuel Injection, Negative Valve Overlap and Internal Fuel Reformation
,” SAE Paper No. 2003-01-0749.
6.
Olsson
,
J.
,
Tunestal
,
P.
, and
Johansson
,
B.
, 2004, “
Boosting for High Load HCCI
,” SAE Paper No. 2004-01-0940.
7.
Duffy
,
K.
,
Kieser
,
A.
,
Fluga
,
E.
, and
Milam
,
D.
, 2004, “
Heavy-Duty HCCI Development Activities
,” 2004 Diesel Engine Emissions Reduction (DEER) Conference, www1.eere.energy.gov/vehiclesandfuels/pdfs/deer_2004/session7/2004_deer_duffy.pdfwww1.eere.energy.gov/vehiclesandfuels/pdfs/deer_2004/session7/2004_deer_duffy.pdf
8.
Weinrotter
,
M.
,
Wintner
,
E.
,
Iskra
,
K.
,
Neger
,
T.
,
Olofsson
,
J.
,
Seyfried
,
H.
,
Aldén
,
M.
,
Lackner
,
M.
,
Winter
,
F.
,
Vressner
,
A.
,
Hultqvist
,
A.
, and
Johansson
,
B.
, 2005, “
Optical Diagnostics of Laser-Induced and Spark Plug-Assisted HCCI Combustion
,” SAE Paper No. 2005-01-0129.
9.
Urushihara
,
T.
,
Yamaguchi
,
K.
,
Yoshizawa
,
K.
, and
Itoh
,
T.
, 2005, “
A Study of a Gasoline-Fueled Compression Ignition Engine—Expansion of HCCI Operation Range Using SI Combustion as a Trigger of Compression Ignition
,” SAE Paper No. 2005-01-0180.
10.
Santoso
,
H.
,
Matthews
,
J.
, and
Cheng
,
W. K.
, 2005, “
Managing SI/HCCI Dual-Mode Engine Operation
,” SAE Paper No. 2005-01-0162.
11.
Hyvonen
,
J.
, and
Johansson
,
B.
, 2005, “
Operating Conditions Using Spark Assisted HCCI Combustion During Combustion Mode Transfer to SI in a Multi-Cylinder VCR-HCCI Engine
,” SAE Paper No. 2005-01-0109.
12.
Koopmans
,
L.
,
Denbratt
,
I.
, and
Backlund
,
O.
, 2002, “
Cycle-to-cycle Variations: Their Influence on Cycle Resolved Gas Temperature and Unburned Hydrocarbons From a Camless Gasoline Compression Ignition Engine
,” SAE Paper No. 2002-01-0110.
13.
14.
Wagner
,
R. M.
,
Edwards
,
K. D.
,
Daw
,
C. S.
,
Green
,
J. B.
, Jr.
, and
Bunting
,
B. G.
, 2006, “
On the Nature of Cycle Dispersion in Spark-Assisted HCCI Combustion
,” SAE Paper No. 2006-01-0418.
15.
Edwards
,
K. D.
,
Daw
,
C. S.
,
Wagner
,
R. M.
, and
Green
,
J. B.
, Jr.
, 2006, “
Cyclic Variability During the Transition Between Spark-Ignited Combustion and HCCI
,”
Proceedings of the 2006 Technical Meeting of the Central States Section of The Combustion Institute
,
Cleveland, OH
, May 21–23.
16.
Daw
,
C. S.
,
Wagner
,
R. M.
,
Edwards
,
K. D.
, and
Green
,
J. B.
, Jr.
, 2007, “
Understanding the Transition Between Conventional Spark-Ignited Combustion and HCCI in a Gasoline Engine
,”
Proc. Combust. Inst.
1540-7489,
31
, pp.
2887
2894
.
17.
Wooldridge
,
M. S.
,
Walton
,
S. M.
,
He
,
X.
, and
Zigler
,
B. T.
, 2006, “
Chemical Kinetics of Homogeneous Charge Compression Ignition and Other Low-Temperature Combustion Strategies
,”
Proceedings of the 2006 Technical Meeting of the Central States Section of the Combustion Institute
,
Cleveland, OH
, May 21–23.
18.
Liu
,
S.
,
Hewson
,
J.
,
Chen
,
J. H.
, and
Pitsch
,
H.
, 2004, “
Effects of Strain Rate on High-Pressure Nonpremixed n-heptane Autoignition in Counterflow
,”
Combust. Flame
0010-2180,
137
(
3
), pp.
320
339
.
19.
Andrae
,
J.
,
Johansson
,
D.
,
Björnbom
,
P.
,
Risberg
,
P.
, and
Kalghatgi
,
G.
, 2005, “
Co-Oxidation in the Auto-Ignition of Primary Reference Fuels and n-Heptane/Toluene Blends
,”
Combust. Flame
0010-2180,
140
, pp.
267
286
.
20.
Ogink
,
R.
, and
Golovitchev
,
V. I.
, 2003, “
Reaction Mechanisms for Natural Gas and Gasoline in Homogeneous Charge Compression Ignition (HCCI) Engine Modeling
,” SAE Sixth International Conference on Engines for Automobiles, ICE2003,
Naples, Italy
, Sept.
21.
Fieweger
,
K.
,
Blumenthal
,
R.
, and
Adomeit
,
G.
, 1997, “
Self-Ignition of S.I. Engine Model Fuels: A Shock Tube Investigation at High Pressure
,”
Combust. Flame
0010-2180,
109
, pp.
599
619
.
You do not currently have access to this content.