High-speed imaging combined with the optical access provided by a research engine offer the ability to directly image and compare ignition and combustion phenomena of various fuels. Such data provide valuable insight into the physical and chemical mechanisms important in each system. In this study, crank-angle resolved imaging data were used to investigate homogeneous charge compression ignition (HCCI) operation of a single-cylinder four-valve optical engine fueled using gasoline, indolene, and iso-octane. Lean operating limits were the focus of the study with the primary objective of identifying different modes of reaction front initiation and propagation for each fuel. HCCI combustion was initiated and maintained over a range of lean conditions for various fuels, from ϕ=0.69 to 0.27. The time-resolved imaging and pressure data show that high rates of heat release in HCCI combustion correlate temporally to simultaneous, intense volumetric blue emission. Lower rates of heat release are characteristic of spatially resolved blue emission. Gasoline supported leaner HCCI operation than indolene. Iso-octane showed a dramatic transition into misfire. Similar regions of preferential ignition were identified for each of the fuels considered using the imaging data.

1.
Epping
,
K.
,
Aceves
,
S.
,
Bechtold
,
R.
, and
Dec
,
J.
, 2002, “
The Potential of HCCI Combustion for High Efficiency and Low Emissions
,” SAE Paper No. 2002-01-1923.
2.
Christensen
,
M.
,
Einewall
,
P.
, and
Johansson
,
B.
, 1997, “
Homogeneous Charge Compression Ignition (HCCI) Using Iso-octane, Ethanol and Natural Gas—A Comparison to Spark Ignition Operation
,” SAE Paper No. 972874.
3.
He
,
X.
,
Zigler
,
B. T.
,
Walton
,
S. M.
,
Wooldridge
,
M. S.
, and
Atreya
,
A.
, 2006, “
A Rapid Compression Facility Study of OH Time Histories During Iso-Octane Ignition
,”
Combust. Flame
0010-2180,
145
, pp.
552
570
.
4.
Walton
,
S. M.
,
He
,
X.
,
Zigler
,
B. T.
,
Wooldridge
,
M. S.
, and
Atreya
,
A.
, 2007, “
An Experimental Investigation of Iso-Octane Ignition Phenomena
,”
Combust. Flame
0010-2180,
150
, pp.
246
262
.
5.
Walton
,
S. M.
,
He
,
X.
,
Zigler
,
B. T.
,
Wooldridge
,
M. S.
, and
Atreya
,
A.
, 2005, “
Demonstration of Distinct Ignition Regimes Using High-Speed Digital Imaging of Iso-Octane Mixtures
,”
Proceedings Fourth Joint Meeting of the U. S. Sections of The Combustion Institute
, Mar. 20–23.
6.
Walton
,
S. M.
,
He
,
X.
,
Donovan
,
M. T.
,
Zigler
,
B. T.
,
Palmer
,
T. R.
,
Wooldridge
,
M. S.
, and
Atreya
,
A.
, 2004, “
High-Speed Digital Imaging of Iso-Octane Mixtures at Homogeneous Charge Compression Ignition Operating Conditions
,”
The Central States Meeting of the Combustion Institute
, Mar. 21–23, Paper No. C.1-5, pp.
1
6
.
7.
Kaiser
,
E. W.
,
Yang
,
J.
,
Culp
,
T.
,
Xu
,
N.
, and
Maricq
,
M. M.
, 2002, “
Homogeneous Charge Compression Ignition Engine-Out Emissions—Does Flame Propagation Occur in Homogeneous Charge Compression Ignition?
,”
Int. J. Engine Res.
1468-0874,
3
, pp.
185
195
.
8.
Kaiser
,
E. W.
,
Maricq
,
M. M.
,
Xu
,
N.
, and
Yang
,
J.
, “
Engine-Out Emissions From a Direct-Injection Spark-Ignition (DISI) Engine
,” 2005, SAE Paper No. 2005-01-3749.
9.
Sunnaborg
,
D.
, 1997, Design Specifications Summary for the Sandia National Laboratories Optical Engine, May.
10.
Gaydon
,
A. G.
, 1957,
The Spectroscopy of Flames
,
Chapman & Hall
,
London
.
11.
Yoshida
,
A.
,
Narisawa
,
M.
,
Tsuji
,
H.
, and
Hirose
,
T.
, 1995, “
Chemiluminescence Emission of C2, CH and OH Radicals from Opposed Jet Burner Flames
,”
JSME Int. J., Ser. B
1340-8054,
38
(
2
), pp.
222
229
.
12.
Walsh
,
K. T.
,
Long
,
M. B.
,
Tanoff
,
M. A.
, and
Smooke
,
M. D.
, 1998, “
Experimental and Computational Study of CH, CH*, and OH* in an Axisymmetric Laminar Diffusion Flame
,”
27th Symposium (International) on Combustion
,
The Combustion Institute
, pp.
615
623
.
13.
Heywood
,
J. B.
, 1988,
Internal Combustion Engine Fundamentals
,
McGraw-Hill
,
New York
.
You do not currently have access to this content.