This study is concerned with 3D RANS simulation of turbulent flow and combustion in a 5 MW commercial gas turbine combustor. The combustor under consideration is a reverse flow, dry low NOx type, in which methane and air are partially mixed inside swirl vanes. We evaluated different turbulent combustion models to provide insights into mixing, temperature distribution, and emission in the combustor. Validation is performed for the models in STAR-CCM+ against the measurement data for a simple swirl flame (http://public.ca.sandia.gov/TNF/swirlflames.html). The standard k-ε model with enhanced wall treatment is employed to model turbulent swirl flow, whereas eddy break-up (EBU), presumed probability density function laminar flamelet model, and partially premixed coherent flame model (PCFM) are tried for reacting flow in the combustor. Independent simulations are carried out for the main and pilot nozzles to avoid flashback and to provide realistic inflow boundary conditions for the combustor. Geometrical details such as air swirlers, vane passages, and liner holes are all taken into account. Tested combustion models show similar downstream distributions of the mean flow and temperature, while EBU and PCFM show a lifted flame with stronger effects of swirl due to limited increase in axial momentum by expansion.

1.
Novik
,
A. S.
,
Miles
,
G. A.
, and
Lilley
,
D. G.
, 1979, “
Numerical Simulation of Combustor Flow and Fields: A Primitive Variable Design Capability
,”
J. Energy
0146-1412,
3
, pp.
95
105
.
2.
Davoudzadeh
,
F.
, and
Liu
,
N. S.
, 2004, “
Numerical Prediction of Non-Reacting and Reacting Flow in a Model Gas Turbine Combustor
,” ASME Paper No. 53496.
3.
Jyothishkumar
,
V.
, and
Ganesan
,
V.
, 2005, “
Modeling of Marine Gas Turbine Combustor Under Non-Reacting and Reacting Conditions
,”
Soc. Nav. Archit. Mar. Eng., Trans.
0081-1661,
1
, pp.
21
32
.
4.
Cui
,
Y.
,
Xu
,
G.
,
Yu
,
B.
,
Nie
,
C.
, and
Huang
,
W.
, 2006, “
The Effects of Pressure on Gas Turbine Combustor Performance: An Investigation via Numerical Simulation
,” ASME Paper No. GT2006-90635.
5.
Fiorina
,
B.
,
Baron
,
R.
,
Gicquel
,
O.
,
Thevenin
,
D.
,
Carpentier
,
S.
, and
Darabiha
,
N.
, 2003, “
Modeling Non-Adiabatic Partially Premixed Flames Using Flame-Prolongation of ILDM
,”
Combust. Theory Modell.
1364-7830,
7
(
3
), pp.
449
470
.
6.
Van Oijen
,
J. A.
, and
De Goey
,
L. P. H.
, 2000, “
Modeling of Premixed Laminar Flames Using Flamelet-Generated Manifolds
,”
Combust. Sci. Technol.
0010-2202,
161
, pp.
113
137
.
7.
Maltsev
,
A.
,
Sadiki
,
A.
, and
Janicka
,
J.
, 2004, “
A New BML-Based RANS Modeling for the Description of Gas Turbine Typical Combustion Processes
,”
Prog. Comput. Fluid Dyn.
1468-4349,
4
, pp.
229
236
.
8.
Schneider
,
E.
,
Maltsev
,
A.
,
Sadiki
,
A.
, and
Janicka
,
J.
, 2008, “
Study on the Potential of BML-Approach and G-Equation Concept-Based Models for Predicting Swirling Partially Premixed Combustion Systems: URANS Computations
,”
Combust. Flame
0010-2180,
152
, pp.
548
572
.
9.
Oberlack
,
M.
,
Wenzel
,
H.
, and
Peters
,
N.
, 2001, “
On Symmetries and Averaging of the G-Equation for Premixed Combustion
,”
Combust. Theory Modell.
1364-7830,
5
(
3
), pp.
363
383
.
10.
Caracciolo
,
L.
, and
Rubini
,
P. A.
, 2006, “
Validation of Partially-Premixed Combustion Model for Gas Turbine Applications
,” ASME Paper No. GT2006-90956.
11.
Zhang
,
Y.
, and
Rawat
,
R.
, 2009, “
Simulation of Turbulent Lifted Flames Using a Partially Premixed Coherent Flame Model
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
131
, p.
031505
.
12.
Selle
,
L.
,
Lartigue
,
G.
,
Poinsot
,
T.
,
Koch
,
R.
,
Schildmacher
,
K. U.
,
Krebs
,
W.
,
Prade
,
B.
,
Kaufmann
,
P.
, and
Veynante
,
D.
, 2004, “
Compressible Large Eddy Simulation of Turbulent Combustion in Complex Geometry on Unstructured Meshes
,”
Combust. Flame
0010-2180,
137
, pp.
489
505
.
13.
Hsiao
,
G.
, and
Mongia
,
H. C.
, 2003, “
Swirl Cup Modeling, Part 3: Grid Independent Solution With Different Turbulence Models
,” AIAA Paper No. 2003-1349.
14.
Wang
,
S.
,
Yang
,
V.
,
Hsiao
,
G.
,
Hsieh
,
S.
, and
Mongia
,
H. C.
, 2007, “
Large Eddy Simulations of Gas-Turbine Swirl Injector Flow Dynamics
,”
J. Fluid Mech.
0022-1120,
583
, pp.
99
122
.
15.
Fuller
,
D. S.
, and
Smith
,
C. E.
, 1993, “
Integrated CFD Modeling of Gas Turbine Combustors
,” AIAA Paper No. 93-2196.
16.
Crocker
,
D. S.
,
Nickolaus
,
D.
, and
Smith
,
C. E.
, 1999, “
CFD Modeling of Gas Turbine Combustor From Compressor Exit to Turbine Inlet
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
121
, pp.
89
95
.
17.
STAR-CCM+ User Guide Ver. 4.02.
18.
Mongia
,
H. C.
, 2008, “
Recent Progress in Comprehensive Modeling of Gas Turbine Combustion
,” AIAA Paper No. 2008-1445.
19.
Menzies
,
K. R.
, 2005, “
An Evaluation of Turbulent Models for the Isothermal Flow in a Gas Turbine Combustion System
,”
Proceedings of the Sixth International Symposium on Engineering Turbulence Modeling and Experiments
, Sardinia, Italy.
20.
Nikjoo
,
H.
, and
Mongia
,
H. C.
, 1999, “
Predictions of Flows With Adverse Pressure Gradients
,” AIAA Paper No. 99-2817.
21.
Karim
,
V. M.
,
Bart
,
M.
, and
Erik
,
D.
, 2003, “
Comparative Study of k-ε Turbulence Models in Inert and Reacting Swirling Flows
,” AIAA Paper No. 2003-3744.
22.
Benelli
,
G.
,
Brunetti
,
J.
,
Carrai
,
L.
, and
Sigali
,
S.
, 2007, “
RANS Simulation of a Gas Turbine Combustor: A Study on Aerodynamics, Mixing and Heat Transfer in Combustive Conditions
,”
Proceedings of the European Combustion Meeting 2007
.
23.
Joung
,
D.
, and
Huh
,
K. Y.
, 2009, “
Numerical Simulation of Non-Reacting and Reacting Flows in a 5 MW Commercial Gas Turbine Combustor
,” ASME Paper No. GT 2009-59987.
24.
Wolfshtein
,
M.
, 1969, “
The Velocity and Temperature Distribution in One-Dimensional Flow With Turbulence Augmentation and Pressure Gradient
,”
Int. J. Heat Mass Transfer
0017-9310,
12
, pp.
301
318
.
25.
Westbrook
,
C. K.
, and
Dryer
,
F. L.
, 1981, “
Simplified Reaction Mechanisms for the Oxidation of Hydrocarbon Fuels in Flames
,”
Combust. Sci. Technol.
0010-2202,
27
(
1
), pp.
31
43
.
26.
Peters
,
N.
, 2006, “
Concept and Key Parameters in Turbulent Combustion Modeling
,”
Proceedings of the Fifth International Symposium on Turbulence Heat and Mass Transfer
, Dubrovnik, Croatia, Sept. 25–29.
27.
Smith
,
G. P.
,
Golden
,
D. M.
,
Frenklach
,
M.
,
Moriarty
,
N. W.
,
Eiteneer
,
B.
,
Goldenberg
,
M.
,
Bowman
,
C. T.
,
Hanson
,
R. K.
,
Song
,
S.
,
Gardiner
,
W. C.
, Jr.
,
Lissianski
,
V. V.
, and
Qin
,
Z.
, http://www.me.berkeley.edu.gri_mech/http://www.me.berkeley.edu.gri_mech/
29.
Jones
,
W. P.
, 1980, “
Prediction Methods for Turbulent Flames
,”
Prediction Methods for Turbulent Flow
,
Hemisphere
,
New York
, pp.
1
45
.
30.
Kobayashi
,
H.
,
Seyama
,
K.
,
Hagiwara
,
H.
, and
Ogami
,
Y.
, 2005, “
Burning Velocity Correlation of Methane/Air Turbulent Premixed Flames at High Pressure and High Temperature
,”
Proc. Combust. Inst.
1540-7489,
30
, pp.
827
834
.
31.
Gulder
,
O. L.
, 1990, “
Turbulence Premixed Flame Propagation Models for Different Combustion Regimes
,”
Proceedings of the 23rd International Symposium on Combustion
,
The Combustion Institute
, pp.
743
750
.
You do not currently have access to this content.