Mixed operation with both centrifugal and reciprocating compressors in a compression plant poses significant operational challenges as pressure pulsations and machine mismatches lead to centrifugal compressors’ instabilities or poor performance. Arrangements with reciprocating compressors placed in series with centrifugal compressors generally lead to higher suction/discharge pulsations on the centrifugal compressor than conventional parallel operation. This paper demonstrates that by properly analyzing and designing the interconnecting piping between the compressors, utilizing pulsation attenuation devices, and matching the compressors’ volumetric-flow rates, a satisfactory functional compression system design can be achieved for even the worst cases of mixed centrifugal and reciprocating compressor operation. However, even small analysis errors, design deviations, or machine mismatches result in a severely limited (or even inoperable) compression system. Also, pulsation attenuation often leads to a significant pressure loss in the interconnect piping system. Utilizing analysis tools in the design process that can accurately model the transient fluid dynamics of the piping system, the pulsation attenuation devices, and the compressor machine behaviors is critical to avoid potentially costly design mistakes and minimize pressured losses. This paper presents the methodology and examples of such an analysis using a 1D transient Navier–Stokes code for complex compression piping networks. The code development, application, and example results for a set of mixed operational cases are discussed. This code serves as a design tool to avoid critical piping layout and compressor matching mistakes early in the compressor station design process.

1.
Abdel-Hamid
,
A. N.
, “
Dynamic Response of a Centrifugal Blower to Periodic Flow Fluctuations
,”
ASME
, Paper No. 85-GT-195.
2.
Aust
,
N.
, 1988,
Ein Verfahren zur digitalen Simulation instationaerer Vorgaenge in Verdichteranlagen
,
Diss U Bw
,
Hamburg
.
3.
Baldwin
,
R. M.
, and
Simmons
,
H. R.
, “
Flow-Induced Vibration in Safety Relief Valves: Design and Troubleshooting Methods
,” ASME Paper No. 84-PVP-8.
4.
Bar
,
L. C.
, 1979, “
The Unsteady Response of an Axial Flow Turbomachinery Rotor to Inlet Flow Distortions
,” MS thesis, Department of Aerospace Engineering, Pennsylvania State University.
5.
Blodgett
,
L. E.
, 1992, “
Theoretical and Practical Design of Pulsation Damping Systems
,”
Flow Meas. Instrum.
0955-5986,
3
(
3
), pp.
203
208
.
6.
Brun
,
K.
,
Deffenbaugh
,
D. M.
, and
Bowles
,
E. B.
, Jr.
, 2007, “
Development of a Transient Fluid Dynamics Solver for Compression System Pulsation Analysis
,” Gas Machinery Conference, Dallas, TX.
7.
Durke
,
R. G.
, and
McKee
,
R. J.
, “
Identification of Pulsation Induced Orifice Metering Errors Including Gage Line Shift
,”
The American Society of Mechanical Engineers
.
8.
Fletcher
,
C. A. J.
, 1991,
Computational Techniques for Fluid Dynamics
, Vol.
I
,
Springer-Verlag
,
Germany
.
9.
Henderson
,
R. E.
, 1972, “
The Unsteady Attenuation of an Axial Flow Turbomachine to an Upstream Disturbance
,” Ph.D. thesis, Department of Engineering, University of Cambridge, England.
10.
Ingard
,
U.
, and
Singhla
,
V. K.
, 1974, “
Sound in Turbulent Pipe Flow
,”
J. Acoust. Soc. Am.
0001-4966,
55
(
3
), pp.
535
538
.
11.
Iwasaki
,
M.
,
Ikeya
,
N.
,
Marutani
,
Y.
, and
Kitazawa
,
T.
, 1994, “
Comparison of Turbocharger Performance Between Steady Flow and Pulsating Flow on Engines
,”
Proceedings of the SAE International Congress and Exposition
, Detroit, MI.
12.
Kinsler
,
L. E.
,
Frey
,
A. R.
,
Coppens
,
A. B.
, and
Sanders
,
J. V.
, 2000,
Fundamentals of Acoustics
,
Wiley
,
New York
.
13.
Kurz
,
R.
,
McKee
,
R.
, and
Brun
,
K.
, “
Pulsations in Centrifugal Compressor Installations
,”
ASME
, Paper No. GT2006-90700.
14.
Meyer
,
W.
, 1988,
Untersuchungen zum Einfluss von Einlaufdrallstoerungen auf das stationaere Betriebsverhalten von Turbostrahltriebwerken
,
Diss U Bw
,
Muenchen
.
15.
Shapiro
,
L.
, 1996,
Performance Formulas for Centrifugal Compressors
,
Solar Turbines
.
16.
Smalley
,
A. J.
,
Jungbauer
,
D. E.
, and
Harris
,
R. E.
, 1995, “
Reciprocating Compressor Reliability Issues
,”
Proceedings of the Fourth Process Plant Reliability Conference
, Houston, TX.
17.
Sparks
,
C. R.
, 1983, “
On the Transient Interaction of Centrifugal Compressors and Their Piping Systems
,” ASME Paper No. 83-GT-236.
18.
Szymko
,
S.
,
Martinez-Botas
,
R. F.
, and
Pullen
,
K. R.
, 2005, “
Experimental Evaluation of Turbocharger Turbine Performance Under Pulsating Flow Conditions
,” ASME Paper No. GT2005-68878.
19.
Wachter
,
J.
, and
Loehle
,
M.
, 1985, “
Identifikation des dynamischen Uebertragungsverhaltens eines dreistufigen Radialverdichters bei saug- und druckseitiger Durchsatzvariation
,” VDI Bericht 572.2, pp.
365
379
.
20.
Yocum
,
A. M.
, and
Henderson
,
R. E.
, 1980, “
The Effects of Some Design Parameters of an Isolated Rotor on Inlet Flow Distortions
,”
ASME J. Eng. Power
0022-0825,
102
, pp.
178
186
.
21.
Morini
,
M.
,
Pinelli
,
M.
, and
Venturini
,
M.
, 2007, “
Development of a One-Dimensional Modular Dynamic Model for the Simulation of Surge in Compression Systems
,”
ASME J. Turbomach.
0889-504X,
129
(
3
), pp.
437
447
.
You do not currently have access to this content.