Fouling of compressor blades is an important mechanism leading to performance deterioration in gas turbines over time. Fouling is caused by the adherence of particles to airfoils and annulus surfaces. Particles that cause fouling are typically smaller than 2 to 10 microns. Smoke, oil mists, carbon, and sea salts are common examples. Fouling can be controlled by appropriate air filtration systems, and can often be reversed to some degree by detergent washing of components. The adherence of particles is impacted by oil or water mists. The result is a build up of material that causes increased surface roughness and to some degree changes the shape of the airfoil (if the material build up forms thicker layers of deposits), with subsequent deterioration in performance. Fouling mechanisms are evaluated based on observed data, and a discussion on fouling susceptibility is provided. A particular emphasis will be on the capabilities of modern air filtration systems.

References

1.
Kurz
,
R.
, and
Brun
,
K.
, 2009, “
Degradation Effects on Industrial Gas Turbines
,”
ASME J. Eng. Gas Turbines Power
,
131
, p.
62401
.
2.
Tarabrin
,
A. P.
,
Schurovsky
,
V. A.
,
Bodrov
,
A. I.
, and
Stalder
,
J.-P.
, 1998, “
An Analysis of Axial Compressor Fouling and a Blade Cleaning Method
,”
ASME J. Turbomach.
,
120
(
2
), pp.
256
261
.
3.
Meher-Homji
,
C. B.
,
Chaker
,
M.
, and
Bromley
,
A. F.
, “
The Fouling of Axial Flow Compressors—Causes, Effects, Susceptibility and Sensitivity
,”
ASME Paper No. GT2009-59239
.
4.
Wilcox
,
M.
,
Baldwin
,
R.
,
Garcia-Hernandez
,
A.
, and
Brun
,
K.
, 2010,
Guideline for Gas Turbine Inlet Air Filtration Systems
,
Gas Machinery Research Council
,
Dallas, TX
.
5.
Brekke
,
O.
, and
Bakken
,
L. E.
, 2010, “
Performance Deterioration of Intake Air Filters for Gas Turbines in Offshore Installations
,”
ASME Paper No. GT2010-22454.
6.
Schroth
,
T.
,
Rothmann
,
A.
, and
Schmitt
,
D.
, 2007, “
Nutzwert eines dreistufigen Luftfiltersystems mit innovativer Technoloie fuer stationaere Gasturbinen
,”
VGB Powertech
,
87
, pp.
48
51
.
7.
Vigueras Zuniga
,
M. O.
, 2007, “
Analysis of Gas turbine Compressor Fouling and Washing on Line
,” Ph.D. thesis, Cranfield University, UK.
8.
Parker
,
G. J.
, and
Lee
,
P.
, 1972, “
Studies of the Deposition of Sub Micron particles on Turbine Blades
,”
Proc. Inst. Mech. Eng., IMechE Conf.
,
186
.
9.
Syverud
,
E.
,
Brakke
,
O.
, and
Bakken
,
L.E.
, 2007, “
Axial Compressor Deterioration Caused by Saltwater Ingestion
,”
ASME J Turbomach.
,
129
, pp.
119
127
.
10.
Elrod
,
C. E.
, and
Bettner
,
J. L.
, 1983, “
Experimental Verification of an Endwall Boundary Layer Prediction Method
,” Report No. AGRAD CP-351.
11.
Fuchs
,
N. A.
, 1964,
The Mechanics of Aerosols
,
Pergamon
,
Oxford, UK.
12.
Poon
,
W.
,
Gessner
,
M.
, and
MacDonald
,
R.
, 2010, “
Eliminating Turbine Compressor Fouling With HEPA Membrane Composite Air Intake Filters
,”
39th Turbomachinery Symposium
,
Houston, TX
.
13.
Song
,
T. W.
,
Sohn
,
J. L.
,
Kim
,
T. S.
,
Kim
,
J. H.
, and
Ro
,
S. T.
, 2003, “
An Improved Analytic Model to Predict Fouling Phenomena in the Axial Flow Compressor of Gas Turbine Engines
,”
Proceedings of the International Gas Turbine Congress
,
Tokyo
, Nov. 2–7, IGTC2003 Paper No. TS-095.
14.
Song
,
T. W.
,
Sohn
,
J. L.
,
Kim
,
T. S.
,
Kim
,
J. H.
, and
Ro
,
S. T.
, 2004, “
An Analytical Approach to Predicting Particle Deposit by Fouling in the Axial Compressor of the Industrial Gas Turbine
,”
Proc. Inst. Mech. Eng., Part A
,
219
, p.
A06304
15.
Levine
,
P.
, 1998, “
Axial Compressor Performance Maintenance Guide
,”
EPRI, Palo Alto, CA. Rep. No. TR-111038
.
16.
Siegel
,
J. A.
, 2002, “
Particulate Fouling of HVAC Heat Exchangers
,” Ph.D. thesis, University of California Berkeley, Berkeley, CA.
17.
Prandtl
,
L.
,
Oswatitsch
,
K.
, and
Wieghard
,
K.
, 1990,
Fuehrer durch die Stroemungslehre
, 9th ed.,
Vieweg, Braunschweig, Germany
.
18.
Lefebvre
,
M.
, and
Arts
,
T.
, 1997, “
Numerical Aero-Thermal Prediction of Laminar/Turbulent Flows in a Two-Dimensional High Pressure Turbine Linear Cascade.
19.
Tabakoff
,
W.
,
Hamed
,
A.
, and
Metwally
,
M.
, 1991, “
Effect of Particle Size Distribution on Particle Dynamics and Blade Erosion in Axial Flow Turbines
,”
ASME J. Eng. Gas Turbine Power
,
113
, pp.
607
615
.
20.
Boelcs
,
A.
, and
Suter
,
P.
, 1986,
Transsonische Turbomaschinen
,
G.
Braun
,
Karlsruhe
,
Germany.
21.
Kurz
,
R.
, 1991,
Experimentelle und theoretische Untersuchungen an gleichfoermig und ungleichfoermig geteilten Turbinengittern
,
Diss. UBwH
,
Hamburg, Germany.
22.
Jacobs
,
G. B.
,
Don
,
W. S.
, and
Dittmann
,
T.
, 2010, “
High-Order Resolution Eulerian-Lagrangian Simulations of Particle Dispersion in the Accelerated Flow Behind a Moving Shock
,”
Theor. Comput. Fluid. Dyn
. 25 (in press).
23.
Deutsch
,
S.
, and
Zierke
,
W. C.
, 1986, “
The Measurement of Boundary Layers on a Compressor Blade in Cascade at High Positive Incidence Angle
,”
NASA Rep. CR-179491.
24.
Beacher
,
B
,
Tabakov
,
W.
, and
Hamid
,
A.
, 1982, “
Improved particle Trajectory Calculations Through Turbomachinery Affected by Ash Particles
,”
ASME J. Eng. Power
,
104
, pp.
64
68
.
25.
Fottner
,
L.
, 1989, “
Review of Turbomachinery Blading Design Problems
,” Report No. AGARD-LS-167.
26.
Sreedharan
,
S. S.
, and
Tafti
,
D. K.
, 2010, “
Composition Dependent Model for the Prediction of Syngas Ash Deposition With Application to a Leading Edge Turbine Vane
,”
ASME Paper No. GT2010-23655.
27.
Morini
,
M.
,
Pinelli
,
M.
,
Spina
,
P. R.
, and
Venturini
,
M.
, 2011, “
Numerical Analysis of the Effects of Nonuniform Surface Roughness on Compressor Stage Performance
,”
ASME J. Eng. Gas Turbines Power
,
133
, p.
072402
.
28.
Milsch
,
R.
, 1971, “
Systematische Untersuchung ueber den Einfluss derRauhigkeit von Verdichterschaufeln auf den Gitterwirkungsgrad
,”
dissertation
,
Technische Hochschule
Hannover
.
29.
Bammert
,
K.
, and
Woelk
,
G. U.
, 1979, “
The Influence of the Blading Surface Roughness on the Aerodynamic Behavior and Characteristic of an Axial Compressor
,”
ASME paper 79-GT-102.
30.
Morini
,
M.
,
Pinelli
,
M.
,
Spina
,
P. R.
, and
Venturini
,
M.
, 2010, “
CFD Simulation of Fouling on Axial Compressor Stages
,”
ASME J. Eng. Gas Turbines Power
,
132
, p.
072401
.
31.
Seddigh
,
F.
, and
Saravanamuttoo
,
H. I. H.
, 1991, “
A Proposed Method for Assessing the Susceptibility of Axial Compressors to Fouling
,”
ASME J. Eng. Gas Turbines Power
,
113
, pp.
595
601
.
32.
Haub
,
G. L.
and
Hauhe
,
W. E.
, 1990, “
Field Evaluation of On-Line Compressor Cleaning in Heavy Duty Industrial Gas Turbines
,”
ASME Paper No. 90-GT-107.
33.
Veer
,
T.
,
Haglerod
,
K. K.
, and
Bolland
,
O.
, 2004, “
Measured Data Correction for Improved Fouling and Degradation Analysis of Offshore Gas Turbines
,”
ASME Paper No. GT-53760.
34.
Schneider
,
E.
,
Demircioglu
,
S.
,
Franco
,
S.
, and
Therkorn
,
D.
, 2010, “
Analysis of Compressor On-Line Washing to Optimize Gas Turbine Poswer Plant Performance
,”
ASME J.Eng. Gas Turbines Power
,
132
, p.
062001
.
You do not currently have access to this content.