A lean partially premixed swirling combustor operated with synthesis gases is studied using large-eddy simulation (LES). The linear-eddy model (LEM) is employed to close the unresolved scalar fluxes with the nonunity Lewis number assumption. Several terms resulting from the LES filtering operation are not modeled but directly resolved considering their unique length and time scales, such as molecular diffusion, scalar mixing, and chemical reactions. First, the validation results on a well-established jet flame indicate a good level of correlation with the experimental data and allow a further analysis of syngas combustion on a practical combustor. Second, the effects of preferential diffusion on the characteristics of flow and combustion dynamics on a lean partially premixed swirling combustor are investigated. The obtained results are expected to provide useful information for the design and operation of gas turbine combustion systems using syngas fuels.

References

1.
Lipatnikov
,
A.
, and
Chomiak
,
J.
,
2005
, “
Molecular Transport Effects on Turbulent Flame Propagation and Structure
,”
Prog. Energy Combust. Sci.
,
31
(
1
), pp.
1
73
.
2.
Law
,
C.
, and
Kwon
,
O.
,
2004
, “
Effects of Hydrocarbon Substitution on Atmospheric Hydrogen–Air Flame Propagation
,”
Int. J. Hydrogen Energy
,
29
(
8
), pp.
867
879
.
3.
Miller
,
D.
,
Evers
,
R.
, and
Skinner
,
G.
,
1963
, “
Effects of Various Inhibitors on Hydrogen–Air Flame Speeds
,”
Combust. Flame
,
7
, pp.
137
142
.
4.
Hu
,
E.
,
Huang
,
Z.
,
He
,
J.
,
Jin
,
C.
, and
Zheng
,
J.
,
2009
, “
Experimental and Numerical Study on Laminar Burning Characteristics of Premixed Methane–Hydrogen–Air Flames
,”
Int. J. Hydrogen Energy
,
34
(
11
), pp.
4876
4888
.
5.
Halter
,
F.
,
Chauveau
,
C.
, and
Gökalp
,
I.
,
2007
, “
Characterization of the Effects of Hydrogen Addition in Premixed Methane/Air Flames
,”
Int. J. Hydrogen Energy
,
32
(
13
), pp.
2585
2592
.
6.
Fu
,
J.
,
Tang
,
C.
,
Jin
,
W.
, and
Huang
,
Z.
,
2014
, “
Effect of Preferential Diffusion and Flame Stretch on Flame Structure and Laminar Burning Velocity of Syngas Bunsen Flame Using OH-PLIF
,”
Int. J. Hydrogen Energy
,
39
(
23
), pp.
12187
12193
.
7.
Liu
,
F.
, and
Gülder
,
Ö.
,
2005
, “
Effects of H2 and H Preferential Diffusion and Unity Lewis Number on Superadiabatic Flame Temperatures in Rich Premixed Methane Flames
,”
Combust. Flame
,
143
(
3
), pp.
264
281
.
8.
Zamashchikov
,
V.
,
Namyatov
,
I.
,
Bunev
,
V.
, and
Babkin
,
V.
,
2004
, “
On the Nature of Superadiabatic Temperatures in Premixed Rich Hydrocarbon Flames
,”
Combust., Explos. Shock Waves
,
40
(
1
), pp.
32
35
.
9.
De Charentenay
,
J.
, and
Ern
,
A.
,
2002
, “
Multicomponent Transport Impact on Turbulent Premixed H2/O2 Flames
,”
Combust. Theory Modell.
,
6
(
3
), pp.
439
462
.
10.
Im
,
H.
, and
Chen
,
J.
,
2002
, “
Preferential Diffusion Effects on the Burning Rate of Interacting Turbulent Premixed Hydrogen–Air Flames
,”
Combust. Flame
,
131
(
3
), pp.
246
258
.
11.
Bell
,
J.
,
Cheng
,
R.
,
Day
,
M.
, and
Shepherd
,
I.
,
2007
, “
Numerical Simulation of Lewis Number Effects on Lean Premixed Turbulent Flames
,”
Proc. Combust. Inst.
,
31
(
1
), pp.
1309
1317
.
12.
Day
,
M.
,
Bell
,
J.
,
Bremer
,
P.-T.
,
Pascucci
,
V.
,
Beckner
,
V.
, and
Lijewski
,
M.
,
2009
, “
Turbulence Effects on Cellular Burning Structures in Lean Premixed Hydrogen Flames
,”
Combust. Flame
,
156
(
5
), pp.
1035
1045
.
13.
Dinkelacker
,
F.
,
Manickam
,
B.
, and
Muppala
,
S.
,
2011
, “
Modelling and Simulation of Lean Premixed Turbulent Methane/Hydrogen/Air Flames With an Effective Lewis Number Approach
,”
Combust. Flame
,
158
(
9
), pp.
1742
1749
.
14.
Barlow
,
R. S.
,
Dunn
,
M. J.
,
Sweeney
,
M. S.
, and
Hochgreb
,
S.
,
2012
, “
Effects of Preferential Transport in Turbulent Bluff-Body-Stabilized Lean Premixed CH4/Air Flames
,”
Combust. Flame
,
159
(
8
), pp.
2563
2575
.
15.
Drake
,
M.
, and
Blint
,
R.
,
1988
, “
Structure of Laminar Opposed-Flow Diffusion Flames With CO/H2/N2 Fuel
,”
Combust. Sci. Technol.
,
61
(
4–6
), pp.
187
224
.
16.
Wang
,
P.
,
Hu
,
S.
, and
Pitz
,
R.
,
2007
, “
Numerical Investigation of the Curvature Effects on Diffusion Flames
,”
Proc. Combust. Inst.
,
31
(
1
), pp.
989
996
.
17.
Kim
,
J.
,
Park
,
J.
,
Kwon
,
O.
,
Lee
,
E.
,
Yun
,
J.
, and
Keel
,
S.
,
2008
, “
Preferential Diffusion Effects in Opposed-Flow Diffusion Flame With Blended Fuels of CH4 and H2
,”
Int. J. Hydrogen Energy
,
33
(
2
), pp.
842
850
.
18.
Drake
,
M.
,
Pitz
,
R.
, and
Lapp
,
M.
,
1986
, “
Laser Measurements on Nonpremixed & Air Flames for Assessment of Turbulent Combustion Models
,”
AIAA J.
,
24
(
6
), pp.
905
917
.
19.
Long
,
M.
,
Stårner
,
S.
, and
Bilger
,
R.
,
1993
, “
Differential Diffusion in Jets Using Joint PLIF and Lorenz-Mie Imaging
,”
Combust. Sci. Technol.
,
92
(
4–6
), pp.
209
224
.
20.
Pitsch
,
H.
,
2000
, “
Unsteady Flamelet Modeling of Differential Diffusion in Turbulent Jet Diffusion Flames
,”
Combust. Flame
,
123
(
3
), pp.
358
374
.
21.
Hilbert
,
R.
, and
Thévenin
,
D.
,
2004
, “
Influence of Differential Diffusion on Maximum Flame Temperature in Turbulent Nonpremixed Hydrogen/Air Flames
,”
Combust. Flame
,
138
(
1
), pp.
175
187
.
22.
Dinesh
,
K.
,
Jiang
,
X.
,
Van
,
J.
,
Bastiaans
,
R.
, and
De Goey
,
L.
,
2013
, “
Hydrogen-Enriched Nonpremixed Jet Flames: Effects of Preferential Diffusion
,”
Int. J. Hydrogen Energy
,
38
(
11
), pp.
4848
4863
.
23.
Menon
,
S.
,
Yeung
,
P.
, and
Kim
,
W.
,
1996
, “
Effect of Subgrid Models on the Computed Interscale Energy Transfer in Isotropic Turbulence
,”
Comput. Fluids
,
25
(
2
), pp.
165
180
.
24.
Calhoon
,
W. H.
,
1996
, “
On Subgrid Combustion Modeling for Large-Eddy Simulations
,”
Ph.D. thesis
, Georgia Institute of Technology, Atlanta, GA.
25.
Kerstein
,
A.
,
1992
, “
Linear-Eddy Modeling of Turbulent Transport. Part 4. Structure of Diffusion Flames
,”
Combust. Sci. Technol.
,
81
(
1–3
), pp.
75
96
.
26.
Martinez
,
D. M.
,
Jiang
,
X.
,
Moulinec
,
C.
, and
Emerson
,
D.
,
2013
, “
Numerical Simulations of Turbulent Jet Flames With Non-Premixed Combustion of Hydrogen-Enriched Fuels
,”
Comput. Fluids
,
88
, pp.
688
701
.
27.
Smith
,
T.
,
1998
, “
Unsteady Simulations of Turbulent Premixed Reacting Flows
,”
Ph.D. thesis
, Georgia Institute of Technology, Atlanta, GA.
28.
Menon
,
S.
, and
Kerstein
,
A.
,
2011
, “
The Linear-Eddy Model
,”
Turbulent Combustion Modeling
,
Springer
,
Dordrecht, The Netherlands
, pp.
221
247
.
29.
Magnussen
,
B.
,
1989
, “
The Eddy Dissipation Concept for Turbulent Combustion Modelling: Its Physical and Practical Implications
,”
Division of Thermodynamics, Norwegian Institute of Technology,
Trondheim, Norway
, Report N-7034.
30.
Zheng
,
Y.
,
Zhu
,
M.
,
Martinez
,
D.
, and
Jiang
,
X.
,
2013
, “
Large-Eddy Simulation of Mixing and Combustion in a Premixed Swirling Combustor With Synthesis Gases
,”
Comput. Fluids
,
88
, pp.
702
714
.
31.
Boivin
,
P.
,
Jiménez
,
C.
,
Sánchez
,
A.
, and
Williams
,
F.
,
2011
, “
A Four-Step Reduced Mechanism for Syngas Combustion
,”
Combust. Flame
,
158
(
6
), pp.
1059
1063
.
32.
Saxena
,
P.
, and
Williams
,
F.
,
2006
, “
Testing a Small Detailed Chemical-Kinetic Mechanism for the Combustion of Hydrogen and Carbon Monoxide
,”
Combust. Flame
,
145
(
1
), pp.
316
323
.
33.
Barlow
,
R.
,
Fiechtner
,
G.
,
Carter
,
C.
, and
Chen
,
J.
,
2000
, “
Experiments on the Scalar Structure of Turbulent CO/H2/N2 Jet Flames
,”
Combust. Flame
,
120
(
4
), pp.
549
569
.
34.
Zhang
,
H.
,
Zhang
,
X.
, and
Zhu
,
M.
,
2012
, “
Experimental Investigation of Thermoacoustic Instabilities for a Model Combustor With Varying Fuel Components
,”
ASME J. Eng. Gas Turbines Power
,
134
(
3
), p.
031504
.
35.
Biagioli
,
F.
, and
Güthe
,
F.
,
2007
, “
Effect of Pressure and Fuel–Air Unmixedness on NOx Emissions From Industrial Gas Turbine Burners
,”
Combust. Flame
,
151
(
1
), pp.
274
288
.
36.
Bilger
,
R.
,
Stárner
,
S.
, and
Kee
,
R.
,
1990
, “
On Reduced Mechanisms for Methaneair Combustion in Nonpremixed Flames
,”
Combust. Flame
,
80
(
2
), pp.
135
149
.
37.
Sánchez
,
A.
, and
Williams
,
F.
,
2014
, “
Recent Advances in Understanding of Flammability Characteristics of Hydrogen
,”
Prog. Energy Combust. Sci.
,
41
, pp.
1
55
.
38.
Libby
,
P.
, and
Williams
,
F.
,
1980
,
Turbulent Reacting Flows
, Vol.
1
,
Springer
,
Berlin
.
You do not currently have access to this content.