Turbine inlet conditions in lean-burn aeroengine combustors are highly swirled and present nonuniform temperature distributions. Uncertainty and lack of confidence associated with combustor-turbine interaction affect significantly engine performance and efficiency. It is well known that only Large-eddy and scale-adaptive simulations (SAS) can overcome the limitations of Reynolds-averaged Navier–Stokes (RANS) in predicting the combustor outlet conditions. However, it is worth investigating the impact of such improvements on the predicted aerothermal performance of the nozzle guide vanes (NGVs), usually studied with RANS-generated boundary conditions. Three numerical modelling strategies were used to investigate a combustor-turbine module designed within the EU Project FACTOR: (i) RANS model of the NGVs with RANS-generated inlet conditions; (ii) RANS model of the NGVs with scale-adaptive simulation (SAS)-generated inlet conditions; (iii) SAS model inclusive of both combustor and NGVs. It was shown that estimating the aerodynamics through the NGVs does not demand particularly complex approaches, in contrast to situations where turbulent mixing is key. High-fidelity predictions of the turbine entrance conditions proved very beneficial to reduce the discrepancies in the estimation of adiabatic temperature distributions. However, a further leap forward can be achieved with an integrated simulation, capable of reproducing the transport of unsteady fluctuations generated from the combustor through the turbine, which play a key role in presence of film cooling. This work, therefore, shows how separate analysis of combustor and NGVs can lead to a poor estimation of the thermal loads and ultimately to a wrong thermal design of the cooling system.

References

1.
Cha
,
C. M.
,
Hong
,
S.
,
Ireland
,
P. T.
,
Denman
,
P.
, and
Savarianandam
,
V.
,
2012
, “
Experimental and Numerical Investigation of Combustor-Turbine Interaction Using an Isothermal, Nonreacting Tracer
,”
ASME J. Eng. Gas Turbines Power
,
134
(
8
), p.
081501
.
2.
Cha
,
C. M.
,
Ireland
,
P. T.
,
Denman
,
P.
, and
Savarianandam
,
V.
,
2012
, “
Turbulence Levels are High at the Combustor-Turbine Interface
,”
ASME
Paper No. GT2012-69130.
3.
Povey
,
T.
, and
Qureshi
,
I.
,
2009
, “
Developments in Hot-Streak Simulators for Turbine Testing
,”
ASME J. Turbomach.
,
131
(
3
), p.
031009
.
4.
Povey
,
T.
, and
Qureshi
,
I.
,
2008
, “
A Hot-Streak (Combustor) Simulator Suited to Aerodynamic Performance Measurements
,”
Proc. Inst. Mech. Eng., Part G
,
226
(
6
), pp.
705
720
.
5.
Qureshi
,
I.
,
Beretta
,
A.
, and
Povey
,
T.
,
2011
, “
Effect of Simulated Combustor Temperature Nonuniformity on HP Vane and End Wall Heat Transfer: An Experimental and Computational Investigation
,”
ASME J. Eng. Gas Turbines Power
,
133
(
3
), p. 031901.
6.
Boudier
,
G.
,
Gicquel
,
L. Y. M.
,
Poinsot
,
T.
,
Bissieres
,
D.
, and
Berat
,
C.
,
2007
, “
Comparison of LES, RANS and Experiments in an Aeronautical Gas Turbine Combustion Chamber
,”
Proc. Combust. Inst.
,
31
(
2
), pp.
3075
3082
.
7.
Spalart
,
P. R.
,
Jou
,
W.-H.
,
Strelets
,
M.
, and
Allmaras
,
S. R.
,
1997
, “
Comments on the Feasibility of LES for Wings, and on a Hybrid RANS/LES Approach
,” Advances in DNS/LES: Direct Numerical Simulation and Large Eddy Simulation, Ruston, LA, pp. 137–148.
8.
Menter
,
F. R.
, and
Egorov
,
Y.
,
2004
, “
A Scale-Adaptive Simulation Model Using Two-Equation Models
,”
AIAA
Paper No. 2005-1095.
9.
Menter
,
F. R.
, and
Egorov
,
Y.
,
2006
, “
Re-Visiting the Turbulent Scale Equation
,”
IUTAM Symposium on One Hundred Years of Boundary Layer Research
,
DLR-Göttingen, Germany
,
Aug. 12–14
, pp.
279
290
.
10.
Andreini
,
A.
,
Facchini
,
B.
,
Insinna
,
M.
,
Mazzei
,
L.
, and
Salvadori
,
S.
,
2015
, “
Hybrid RANS-LES Modeling of a Hot Streak Generator Oriented to the Study of Combustor-Turbine Interaction
,”
ASME
Paper No. GT2015-42402.
11.
Andreini
,
A.
,
Bacci
,
T.
,
Insinna
,
M.
,
Mazzei
,
L.
, and
Salvadori
,
S.
,
2017
, “
Hybrid RANS-LES Modeling of the Aerothermal Field in an Annular Hot Streak Generator for the Study of Combustor–Turbine Interaction
,”
ASME J. Eng. Gas Turbines Power
,
139
(
2
), p.
021508
.
12.
Koupper
,
C.
,
Bonneau
,
G.
,
Caciolli
,
G.
,
Facchini
,
B.
,
Tarchi
,
L.
,
Gicquel
,
L.
, and
Duchaine
,
F.
,
2014
, “
Development of an Engine Representative Combustor Simulator Dedicated to Hot Streak Generation
,”
ASME J. Turbomach.
,
136
(
11
), p.
111007
.
13.
Koupper
,
C.
,
Bonneau
,
G.
,
Bacci
,
T.
,
Facchini
,
B.
,
Tarchi
,
L.
,
Gicquel
,
L.
, and
Duchaine
,
F.
,
2015
, “
Experimental and Numerical Calculation of Turbulent Timescales at the Exit of an Engine Representative Combustor Simulator
,”
ASME
Paper No. GT2015-42278.
14.
Bacci
,
T.
,
Caciolli
,
G.
,
Facchini
,
B.
,
Tarchi
,
L.
,
Koupper
,
C.
, and
Champion
,
J.-L.
,
2015
, “
Flowfield and Temperature Profiles Measurements on a Combustor Simulator Dedicated to Hot Streaks Generation
,”
ASME
Paper No. GT2015-42217.
15.
Bacci
,
T.
,
Facchini
,
B.
,
Picchi
,
A.
,
Tarchi
,
L.
,
Koupper
,
C.
, and
Bonneau
,
G.
,
2015
, “
Turbulence Field Measurements at the Exit of an Engine Representative Combustor Simulator Dedicated to Hot Streaks Generation
,”
ASME
Paper No. GT2015-42218.
16.
Thomas
,
M.
,
Dauptain
,
A.
,
Duchaine
,
F.
,
Gicquel
,
L. Y. M.
,
Koupper
,
C.
, and
Nicoud
,
F.
,
2017
, “
Comparison of Heterogeneous and Homogeneous Coolant Injection Models for Large Eddy Simulation of Multiperforated Liners Present in a Combustion Simulator
,”
ASME
Paper No. GT2017-64622.
17.
Koupper
,
C.
,
Bonneau
,
G.
,
Gicquel
,
L.
, and
Duchaine
,
F.
,
2016
, “
Large Eddy Simulations of the Combustor Turbine Interface: Study of the Potential and Clocking Effects
,”
ASME
Paper No. GT2016-56443.
18.
Griffini
,
D.
,
Insinna
,
M.
,
Salvadori
,
S.
, and
Martelli
,
F.
,
2015
, “
Clocking Effects of Inlet Non-Uniformities in a Fully Cooled High-Pressure Vane: A Conjugate Heat Transfer Analysis
,”
ASME J. Turbomach.
,
138
(
2
), p. 021006.
19.
Insinna
,
M.
,
Griffini
,
D.
,
Salvadori
,
S.
, and
Martelli
,
F.
,
2015
, “
Effects of Realistic Inflow Conditions on the Aero-Thermal Performance of a Film-Cooled Vane
,”
ASME
Paper No. GT2015-42496.
20.
Duchaine
,
F.
,
Dombard
,
J.
,
Gicquel
,
L. Y. M.
, and
Koupper
,
C.
,
2017
, “
Integrated Large Eddy Simulation of Combustor and Turbine Interactions: Effect of Turbine Stage Inlet Condition
,”
ASME
Paper No. GT2017-63473.
21.
Kirollos
,
B.
,
Lubbock
,
R.
,
Beard
,
P.
,
Goenaga
,
F.
,
Rawlinson
,
A.
,
Janke
,
E.
, and
Povey
,
T.
,
2017
, “
ECAT: An Engine Component Aerothermal Facility at the University of Oxford
,”
ASME
Paper No. GT2017-64736.
22.
Werschnik
,
H.
,
Schiffer
,
H.-P.
, and
Steinhausen
,
C.
,
2017
, “
Robustness of a Turbine Endwall Film Cooling Design to Swirling Combustor Inflow
,”
J. Propul. Power
,
33
(
4
), pp.
917
926
.
23.
Werschnik
,
H.
,
Hilgert
,
J.
,
Wilhelm
,
M.
,
Bruschewski
,
M.
, and
Schiffer
,
H.-P.
,
2017
, “
Influence of Combustor Swirl on Endwall Heat Transfer and Film Cooling Effectiveness at the Large Scale Turbine Rig
,”
ASME J. Turbomach.
,
139
(
8
), p.
081007
.
24.
Werschnik
,
H.
,
Schneider
,
M.
,
Herrmann
,
J.
,
Ivanov
,
D.
,
Schiffer
,
H.-P.
, and
Lyko
,
C.
,
2017
, “
The Influence of Combustor Swirl on Pressure Losses and the Propagation of Coolant Flows at the Large Scale Turbine Rig (LSTR): Experimental and Numerical Investigation
,”
Int. J. Turbomach. Propul. Power
,
2
(
3
), p. 12http://www.mdpi.com/2504-186X/2/3/12.
25.
Hilgert
,
J.
,
Bruschewski
,
M.
,
Werschnik
,
H.
, and
Schiffer
,
H.-P.
,
2017
, “
Numerical Studies on Combustor-Turbine Interaction at the Large Scale Turbine Rig (LSTR)
,”
ASME
Paper No. GT2017-64504.
26.
Bacci
,
T.
,
Lenzi
,
T.
,
Picchi
,
A.
,
Mazzei
,
L.
, and
Facchini
,
B.
,
2018
, “
Flow Field and Hot Streak Migration Through High Pressure Cooled Vanes With Representative Lean Burn Combustor Outflow
,”
ASME
Paper No. GT2018-76728.
27.
Bacci
,
T.
,
Becchi
,
R.
,
Picchi
,
A.
, and
Facchini
,
B.
,
2018
, “
Adiabatic Effectiveness on High Pressure Turbine Nozzle Guide Vanes Under Realistic Swirling Conditions
,”
ASME
Paper No. GT2018-76637.
28.
Han
,
J.
,
Dutta
,
S.
, and
Ekkad
,
S.
,
2000
,
Gas Turbine Heat Transfer and Cooling Technology
,
Taylor & Francis
,
Hoboken, NJ
, pp.
129
249
.
29.
Povey
,
T.
,
Chana
,
K. S.
,
Jones
,
T. V.
, and
Hurrion
,
J.
,
2007
, “
The Effect of Hot-Streaks on HP Vane Surface and Endwall Heat Transfer: An Experimental and Numerical Study
,”
ASME J. Turbomach.
,
129
(
1
), pp.
32
43
.
30.
Bogard
,
D. G.
,
2006
, “
Airfoil Film Cooling
,”
The Gas Turbine Handbook
,
National Energy Technology Laboratory
,
Morgantown, WV
, Chap. 4.2.2.1.
31.
Aillaud
,
P.
,
Gicquel
,
L. Y. M.
, and
Duchaine
,
F.
,
2017
, “
Investigation of the Concave Curvature Effect for an Impinging Jet Flow
,”
Phys. Rev. Fluids
,
2
(
11
), p.
114608
.
32.
Menter
,
F. R.
, and
Egorov
,
Y.
,
2010
, “
The Scale-Adaptive Simulation Method for Unsteady Turbulent Flow Predictions—Part 1: Theory and Model Description
,”
Flow Turbul. Combust.
,
85
(
1
), pp.
113
138
.
33.
Menter
,
F. R.
,
2012
,
Best Practice: Scale-Resolving Simulations in ANSYS CFD
,
ANSYS Germany GmbH
,
Otterfing, Germany
.
34.
Pope
,
S. B.
,
2004
, “
Ten Questions Concerning the Large-Eddy Simulation of Turbulent Flows
,”
New J. Phys.
,
6
, pp.
1
24
.
35.
Mendez
,
S.
, and
Nicoud
,
F.
,
2008
, “
Adiabatic Homogeneous Model for Flow Around a Multiperforated Plate
,”
AIAA J.
,
46
(
10
), pp.
2623
2633
.
You do not currently have access to this content.