The resonant coupling between flames and acoustics is a growing issue for gas turbine manufacturers, which can be reduced by adding acoustic dampers on the combustion chamber walls. Nonetheless, if the engine is operated out of the stable window, the damper is exposed to high-amplitude acoustic levels, which trigger unwanted nonlinear effects. This work provides an overview of the dynamics of this coupled system using a simple analytical model, where a perfectly tuned damper is coupled to the combustion chamber. The damper, crossed by a purge flow in order to prevent hot gas ingestion, is modeled as a nonlinearly damped harmonic oscillator. The combustion chamber featuring a linearly unstable thermoacoustic mode is modeled as a Van der Pol oscillator. Analyzing the averaged amplitude equations gives the limit cycle amplitudes as function of the growth rate of the unstable mode and the mean velocity through the damper neck. Experiments are also performed on a simple rectangular cavity, where the thermoacoustic instability is mimicked by an electro-acoustic instability. A feedback loop is built, through which the growth rate of the instability can be controlled. A Helmholtz damper is added to the cavity and tuned to the mode of interest. The stabilization capabilities of the damper and the amplitude of the limit cycle in the unstable cases are in good agreement between the experiments and the analytical and numerical predictions, underlining the potentially dangerous behavior of the system, which should be taken into account for real engine cases.

References

1.
Keller
,
J. J.
,
1995
, “
Thermoacoustic Oscillations in Combustion Chambers of Gas Turbines
,”
AIAA J.
,
33
(
12
), pp.
2280
2287
.
2.
Lieuwen
,
T. C.
,
2002
, “
Experimental Investigation of Limit-Cycle Oscillations in an Unstable Gas Turbine Combustor
,”
J. Propul. Power
,
18
(
1
), pp.
61
67
.
3.
Stow
,
S. R.
, and
Dowling
,
A. P.
,
2004
, “
Low-Order Modelling of Thermoacoustic Limit Cycles
,”
ASME
Paper No. GT2004-54245.
4.
Stow
,
S. R.
, and
Dowling
,
A. P.
,
2008
, “
A Time-Domain Network Model for Nonlinear Thermoacoustic Oscillations
,”
ASME J. Eng. Gas Turbines Power
,
131
(3), p.
031502
.
5.
Zhao
,
D.
, and
Li
,
X.
,
2015
, “
A Review of Acoustic Dampers Applied to Combustion Chambers in Aerospace Industry
,”
Prog. Aerosp. Sci.
,
74
, pp.
114
130
.
6.
Bellucci
,
V.
,
Paschereit
,
C.
,
Flohr
,
P.
, and
Magni
,
F.
,
2001
, “
On the Use of Helmholtz Resonators for Damping Acoustic Pulsations in Industrial Gas Turbines
,”
ASME J. Eng. Gas Turbines Power
,
126
(2), pp.
271
275
.
7.
Dupere
,
I.
, and
Dowling
,
A.
,
2005
, “
The Use of Helmholtz Resonators in a Practical Combustor
,”
ASME J. Eng. Gas Turbines Power
,
127
(
2
), pp.
268
275
.
8.
Bothien
,
M.
,
Noiray
,
N.
, and
Schuermans
,
B.
,
2014
, “
A Novel Damping Device for Broadband Attenuation of Low-Frequency Combustion Pulsations in Gas Turbines
,”
ASME J. Eng. Gas Turbines Power
,
136
(
4
), p.
041504
.
9.
Mensah
,
G. A.
, and
Moeck
,
J. P.
,
2017
, “
Acoustic Damper Placement and Tuning for Annular Combustors: An Adjoint-Based Optimization Study
,”
ASME J. Eng. Gas Turbines Power
,
139
(
6
), p.
061501
.
10.
Noiray
,
N.
, and
Schuermans
,
B.
,
2012
, “
Theoretical and Experimental Investigations on Damper Performance for Suppression of Thermoacoustic Oscillations
,”
J. Sound Vib.
,
331
(
12
), pp.
2753
2763
.
11.
Förner
,
K.
,
Miranda
,
A. C.
, and
Polifke
,
W.
,
2015
, “
Mapping the Influence of Acoustic Resonators on Rocket Engine Combustion Stability
,”
J. Propul. Power
,
31
(
4
), pp.
1159
1166
.
12.
Zahn
,
M.
,
Betz
,
M.
,
Schulze
,
M.
,
Hirsch
,
C.
, and
Sattelmayer
,
T.
,
2017
, “
Predicting the Influence of Damping Devices on the Stability Margin of an Annular Combustor
,”
ASME
Paper No. GT2017-64238.
13.
Campa
,
G.
, and
Camporeale
,
S. M.
,
2014
, “
Influence of Nonlinear Effects on the Limit Cycle in a Combustion Chamber Equipped With Helmholtz Resonator
,”
ASME
Paper No. GT2014-25228.
14.
Tam
,
C. K.
,
Kurbatskii
,
K. A.
,
Ahuja
,
K.
, and
Gaeta
,
R.
,
2001
, “
A Numerical and Experimental Investigation of the Dissipation Mechanisms of Resonant Acoustic Liners
,”
J. Sound Vib.
,
245
(
3
), pp.
545
557
.
15.
Hersh
,
A.
,
Walker
,
B.
, and
Celano
,
J.
,
2003
, “
Helmholtz Resonator Impedance Model—Part 1: Nonlinear Behavior
,”
AIAA J.
,
41
(
5
), pp.
795
808
.
16.
Zinn
,
B. T.
,
1970
, “
A Theoretical Study of Non-Linear Damping by Helmholtz Resonators
,”
J. Sound Vib.
,
13
(
3
), pp.
347
356
.
17.
Keller
,
J. J.
, and
Zauner
,
E.
,
1995
, “
On the Use of Helmholtz Resonators as Sound Attenuators
,”
Z. Angew. Math. Phys.
,
46
(
3
), pp.
297
327
.
18.
Singh
,
D. K.
, and
Rienstra
,
S. W.
,
2014
, “
Nonlinear Asymptotic Impedance Model for a Helmholtz Resonator Liner
,”
J. Sound Vib.
,
333
(
15
), pp.
3536
3549
.
19.
Förner
,
K.
,
Tournadre
,
J.
,
Polifke
,
W.
, and
Martínez-Lera
,
P.
,
2015
, “
Characterization of the Nonlinear Response of a Helmholtz Resonator
,” , Sonderforschungsbereich/Transregio 40, Munich, Germany,
Annual Report
.http://www.sfbtr40.de/fileadmin/Annual-Reports/annualreport2015/annualreport-2015-a3.pdf
20.
Tournadre
,
J.
,
Förner
,
K.
,
Polifke
,
W.
,
Martínez-Lera
,
P.
, and
Desmet
,
W.
,
2016
, “
Determination of Acoustic Impedance for Helmholtz Resonators Through Incompressible Unsteady Flow Simulations
,”
AIAA J.
,
55
(
3
), pp.
790
798
.
21.
Park
,
I.-S.
, and
Sohn
,
C. H.
,
2010
, “
Nonlinear Acoustic Damping Induced by a Half-Wave Resonator in an Acoustic Chamber
,”
Aerosp. Sci. Technol.
,
14
(
6
), pp.
442
450
.
22.
Ćosić
,
B.
,
Reichel
,
T.
, and
Paschereit
,
C.
,
2012
, “
Acoustic Response of a Helmholtz Resonator Exposed to Hot-Gas Penetration and High Amplitude Oscillations
,”
ASME J. Eng. Gas Turbines Power
,
134
(
10
), p.
101503
.
23.
Ćosić
,
B.
,
Wassmer
,
D.
,
Terhaar
,
S.
, and
Paschereit
,
C.
,
2015
, “
Acoustic Response of Helmholtz Dampers in the Presence of Hot Grazing Flow
,”
J. Sound Vib.
,
335
, pp.
1
18
.
24.
Bothien
,
M.
, and
Wassmer
,
D.
,
2015
, “
Impact of Density Discontinuities on the Resonance Frequency of Helmholtz Resonators
,”
AIAA J.
,
53
(
4
), pp.
877
887
.
25.
Yang
,
D.
, and
Morgans
,
A. S.
,
2017
, “
Acoustic Models for Cooled Helmholtz Resonators
,”
AIAA J.
,
55
(
9
), pp.
3120
3127
.
26.
Morse
,
P.
, and
Ingard
,
K.
,
1987
,
Theoretical Acoustics
,
Princeton University Press
, Princeton, NJ.
27.
Fahy
,
F.
, and
Schofield
,
C.
,
1980
, “
A Note on the Interaction Between a Helmholtz Resonator and an Acoustic Mode of an Enclosure
,”
J. Sound Vib.
,
72
(
3
), pp.
365
378
.
28.
Cummings
,
A.
,
1992
, “
The Effects of a Resonator Array on the Sound Field in a Cavity
,”
J. Sound Vib.
,
154
(
1
), pp.
25
44
.
29.
Li
,
D.
, and
Cheng
,
L.
,
2007
, “
Acoustically Coupled Model of an Enclosure and a Helmholtz Resonator Array
,”
J. Sound Vib.
,
305
(
1–2
), pp.
272
288
.
30.
Noiray
,
N.
, and
Denisov
,
A.
,
2017
, “
A Method to Identify Thermoacoustic Growth Rates in Combustion Chambers From Dynamic Pressure Time Series
,”
Proc. Combust. Inst.
,
36
(
3
), pp.
3843
3850
.
31.
Stratonovich
,
R. L.
,
1967
,
Topics in the Theory of Random Noise
, Vol.
2
, Gordon and Breach, New York.
32.
Balanov
,
A.
,
Janson
,
N.
,
Postnov
,
D.
, and
Sosnovtseva
,
O.
,
2009
,
Synchronization: From Simple to Complex
,
Springer
, Berlin.
33.
Bourquard
,
C.
, and
Noiray
,
N.
,
2016
, “
Criteria for Choosing Helmholtz or Quarter-Wave Dampers to Suppress Combustion Instabilities
,”
International Symposium on Thermoacoustic Instabilities in Gas Turbines and Rocket Engines
, Munich, Germany, May 30–June 02, Paper No: GTRE-047.
34.
Jang
,
S.-H.
, and
Ih
,
J.-G.
,
1998
, “
On the Multiple Microphone Method for Measuring In-Duct Acoustic Properties in the Presence of Mean Flow
,”
J. Acoust. Soc. Am.
,
103
(
3
), pp.
1520
1526
.
35.
Noiray
,
N.
, and
Schuermans
,
B.
,
2013
, “
Deterministic Quantities Characterizing Noise Driven Hopf Bifurcations in Gas Turbine Combustors
,”
Int. J. Nonlinear Mech.
,
50
, pp.
152
163
.
You do not currently have access to this content.