Emission and fuel consumption in swirl-supported diesel engines strongly depend on the in-cylinder turbulent flows. But the physical effects of squish flow on the tangential flow and turbulence production are still far from well understood. To identify the effects of squish flow, Particle image velocimetry (PIV) experiments are performed in a motored optical diesel engine equipped with different bowls. By comparing and associating the large-scale flow and turbulent kinetic energy (k), the main effects of the squish flow are clarified. The effect of squish flow on the turbulence production in the rθ plane lies in the axial-asymmetry of the annular distribution of radial flow and the deviation between the ensemble-averaged swirl field and rigid body swirl field. Larger squish flow could promote the swirl center to move to the cylinder axis and reduce the deformation of swirl center, which could decrease the axial-asymmetry of annular distribution of radial flow, further, that results in a lower turbulence production of the shear stress. Moreover, larger squish flow increases the radial fluctuation velocity which makes a similar contribution to k with the tangential component. The understanding of the squish flow and its correlations with tangential flow and turbulence obtained in this study is beneficial to design and optimize the in-cylinder turbulent flow.

References

1.
Iwanaga
,
W.
,
Yamato
,
T.
,
Kosaka
,
T.
, and
Kabe
,
Y.
,
2006
, “
Development of New Industrial High Power Density Diesel Engines
,”
SAE
Paper No. 2006-32-0002.
2.
Dharan
,
R. B.
,
Goud
,
R.
manoharan
,
R.
, and
Dhiman
,
V.
,
2013
, “
Design and Development of Cylinder Block for High Power Density Diesel Engine Using CAE/CFD Tools for a Tractor Engine With Integrated Approach
,”
SAE
Paper No. 2013-01-2753.
3.
Endres
,
H.
,
Neußer
,
H.
, and
Wurms
,
R.
,
1992
, “
Influence of Swirl and Tumble on Economy and Emissions of Multi Valve SI Engines
,”
SAE
Paper No. 920516.
4.
Heywood
,
J. B.
,
1988
,
Internal Combustion Engine Fundamentals
,
McGraw-Hill
,
New York
.
5.
Pope
,
S. B.
,
2000
,
Turbulent Flows
,
Cambridge University Press
,
Cambridge, UK
.
6.
Arcoumanis
,
C.
,
Bicen
,
A. F.
, and
Whitelaw
,
J. H.
,
1983
, “
Squish and Swirl-Squish Interaction in Motored Model Engines
,”
ASME J. Fluids Eng.
,
105
(
1
), pp.
105
112
.
7.
Kan
,
Z.
,
Federico
,
P.
,
Stephen
,
B.
,
Cheolwoong
,
P.
,
Reitz
,
R. D.
, and
Miles
,
P. C.
,
2015
, “
Piston Geometry Effects on In-Cylinder Swirl Asymmetry in a Light-Duty Optical Diesel Engine
,” Sandia National Laboratories, Albuquerque, NM, Report No.
SAND-2015-7136C/603195
.https://www.osti.gov/servlets/purl/1289563
8.
Sun
,
Y.
,
Sun
,
K.
,
Lu
,
Z.
,
Wang
,
T.
, and
Jia
,
M.
, “
Selection of Swirl Ratio in Diesel Engines Based on Droplet Trajectory Analysis
,”
SAE
Paper No. 2017-01-0813.
9.
Miles
,
P. C.
,
2008
, “
Turbulent Flow Structure in Direct-Injection, Swirl-Supported Diesel Engines
,”
Flow and Combustion in Reciprocating Engines
,
C.
Arcoumanis
, ed.,
Springer
,
Berlin
.
10.
Arcoumanis
,
C.
,
Begleris
,
P.
,
Gosman
,
A.
, and
Whitelaw
,
J.
,
1986
, “
Measurements and Calculations of the Flow in a Research Diesel Engine
,”
SAE
Paper No. 861563.
11.
Payri
,
F.
,
Desantes
,
J.
, and
Pastor
,
J.
,
1996
, “
LDV Measurements of the Flow Inside the Combustion Chamber of a 4-Valve DI Diesel Engine With Axisymmetric Piston-Bowls
,”
Exp. Fluids
,
22
(
2
), pp.
118
128
.
12.
Vafidis
,
C.
,
1984
, “
Influence of Induction Swirl and Piston Configuration on Air Flow in a Four-Stroke Model Engine
,”
Proc. Inst. Mech. Eng. C
,
198
(
2
), pp.
71
79
.
13.
Arcoumanis
,
C.
,
Whitelaw
,
J. H.
, and
Hentschel
,
W.
,
1994
, “
Flow and Combustion in a Transparent 1.9 Litre Direct Injection Diesel Engine
,”
Proc. Inst. Mech. Eng. D
,
208
(
3
), pp.
191
205
.
14.
Béard
,
P.
,
Mokaddem
,
K.
, and
Baritaud
,
T.
,
1998
, “
Measurement and Modeling of the Flow-Field in a DI Diesel Engine: Effects of Piston Bowl Shape and Engine Speed
,”
SAE
Paper No. 982587.
15.
Miles
,
P. C.
,
Megerle
,
M.
,
Sick
,
V.
,
Richards
,
K.
,
Nagel
,
Z.
, and
Reitz
,
R. D.
,
2001
, “
The Evolution of Flow Structures and Turbulence in a Fired HSDI Diesel Engine
,”
SAE
Paper No. 2001-01-3501.
16.
Auriemma
,
M.
,
Corcione
,
F. E.
,
Macchioni
,
R.
, and
Valentino
,
G.
,
1998
, “
Interpretation of Air Motion in Reentrant Bowl In-Piston Engine by Estimating Reynolds Stresses
,”
SAE
Paper No. 980482.
17.
Corcione
,
F. E.
, and
Valentino
,
G.
,
1994
, “
Analysis of In-Cylinder Flow Processes by LDA
,”
Combust. Flame
,
99
(
2
), pp.
387
394
.
18.
Celik
,
I.
,
Yavuz
,
I.
,
Smirnov
,
A.
,
Smith
,
J.
,
Amin
,
E.
, and
Gel
,
A.
,
2000
, “
Prediction of In-Cylinder Turbulence for IC Engines
,”
Combust. Sci. Technol.
,
153
(
1
), pp.
339
368
.
19.
Miles
,
P. C.
,
Megerle
,
M.
,
Nagel
,
Z.
,
Reitz
,
R. D.
, and
Sick
,
V.
,
2002
, “
Measurements and Modeling of Reynolds Stress and Turbulence Production in a Swirl-Supported, Direct-Injection Diesel Engine
,”
Proc. Combust. Inst.
,
29
(
1
), pp.
719
726
.
20.
Miles
,
P. C.
,
Megerle
,
M.
,
Nagel
,
Z.
,
Reitz
,
R. D.
,
Lai
,
M. C.
, and
Sick
,
V.
,
2003
, “
An Experimental Assessment of Turbulence Production, Reynolds Stress and Length Scale (Dissipation) Modeling in a Swirl-Supported DI Diesel Engine
,”
SAE
Paper No. 2003-01-1072.
21.
Miles
,
P. C.
,
Choi
,
D.
,
Megerle
,
M.
,
RempelEwert
,
B.
,
Reitz
,
R. D.
,
Lai
,
M. C.
, and
Sick
,
V.
,
2004
, “
The Influence of Swirl Ratio on Turbulent Flow Structure in a Motored HSDI Diesel Engine—A Combined Experimental and Numerical Study
,”
SAE
Paper No. 2004-01-1678.
22.
Takamoto
,
Y.
, and
Gyakushi
,
N.
,
2008
, “
Fundamental Characteristics of Squish Flow in D.I. Diesel Engine
,”
Int. J. Bull. JSME
,
30
(
268
), pp.
1615
1621
.
23.
Nagayama
,
I.
,
Araki
,
Y.
, and
Iioka
,
Y.
,
1977
, “
Effects of Swirl and Squish on S.I. Engine Combustion and Emission
,”
SAE
Paper No. 770217.
24.
Sasaki
,
S.
, and
Tamaki
,
Y.
,
1990
, “
Direct Fuel Injection Type Spark Ignition Internal Combustion Engine Having a Squish Flow for Assisting Fuel Evaporation
,” U.S. Patent No. 4920937.
25.
Ward
,
M. A.
,
2001
, “
Squish Induced Turbulence Generating Colliding Flow Coupled Spark Discharge in an IC Engine
,” U.S. Patent No. 6267107B1.
26.
Ward
,
M. A.
,
2007
, “
Two-Valve High Squish Flow IC Engine
,” U.S. Patent No. 089785A2.
27.
Chen
,
H.
,
Xu
,
M.
, and
Hung
,
D.
,
2014
, “
Analyzing In-Cylinder Flow Evolution and Variations in a Spark-Ignition Direct-Injection Engine Using Phase-Invariant Proper Orthogonal Decomposition Technique
,”
SAE
Paper No. 2014-01-1174.
28.
Perini
,
F.
,
Zha
,
K.
,
Busch
,
S.
,
Kurtz
,
E.
,
Peterson
,
R. C.
,
Warey
,
A.
, and
Reitz
,
R. D.
,
2017
, “
Piston Geometry Effects in a Light-Duty, Swirl-Supported Diesel Engine: Flow Structure Characterization
,”
Int. J. Engine Res.
,
19
(10), pp.
1079
1098
.
29.
Zha
,
K.
,
Busch
,
S.
,
Warey
,
A.
,
Peterson
,
R.
, and
Kurtz
,
E.
, “
A Study of Piston Geometry Effects on Late-Stage Combustion in a Light-Duty Diesel Engine Using Combustion Image Velocimetry
,”
SAE
Paper No. 2018-01-0230.
30.
Wu
,
H. W.
, and
Perng
,
S. W.
,
2004
, “
Numerical Analysis of Thermal Turbulent Flow in the Bowl-In-Piston Combustion Chamber of a Motored Engine
,”
Int. J. Therm. Sci.
,
43
(
10
), pp.
1011
1023
.
31.
Heinrich
,
V.
,
2001
, “
Detection of Vortices and Quantitative Evaluation of Their Main Parameters From Experimental Velocity Data
,”
Meas. Sci. Technol.
,
12
, p.
1199
.
32.
Scarano
,
F.
,
Benocci
,
C.
, and
Riethmuller
,
M. L.
,
1999
, “
Pattern Recognition Analysis of the Turbulent Flow Past a Backward Facing Step
,”
Phys. Fluids
,
11
(
12
), pp.
3808
3818
.
33.
Liu
,
D. M.
,
Wang
,
T. Y.
,
Jia
,
M.
, and
Wang
,
G.
,
2012
, “
Cycle-To-Cycle Variation Analysis of In-Cylinder Flow in a Gasoline Engine With Variable Valve Lift
,”
Exp. Fluids
,
53
(
3
), pp.
585
602
.
34.
Chen
,
H.
, and
Sick
,
V.
, “
Three-Dimensional Three-Component Air Flow Visualization in a Steady-State Engine Flow Bench Using a Plenoptic Camera
,”
SAE
Paper No. 2017-01-0614.
35.
Zhao
,
S. N.
, and
Yu
,
Y. X.
,
2016
,
Ten Lectures on the Fluid Turbulence-Essentials of Understanding Turbulence
,
China Science Publishing & Media Ltd
.,
Beijing, China
.
You do not currently have access to this content.