Abstract

The stringent emission regulations diesel engines are required to meet have resulted in the usage of multihole and ultramultihole injectors, nowadays. In this research study, a double-layered eight-hole diesel injection nozzle was investigated both numerically and experimentally. A three-dimensional model of the nozzle which was validated with experimental results was used to analyze the injection characteristics of each hole. The validation was conducted by comparing experiment and simulation injection rate results, acquired simultaneously from all the holes of the injector and the model. The fuel flow rates of the lower layered holes are higher than those of the upper layered holes. Two different needle eccentricity models were established. The first model only included the lateral displacement of the needle during needle lift. The needle reached maximum displacement at full needle lift. The second model considered the needle inelastic deformation into consideration. The needle radially displaces and glides along with the needle seat surface during needle lift. When the eccentricity reached a maximum in the radial direction, the needle began to lift upward vertically. The differences in injection characteristics under the different eccentricity models were apparent. The results indicated that the cycle injection quantity, fuel injection rate, and cavitation of each hole were affected during the initial lifting stages of the needle lift. As the eccentricity of the needle increases, the injection rate uniformity from the nozzle hole deteriorates. The result showed that the upper layered holes were affected by the needle eccentricity during needle lift.

References

1.
Tay
,
K. L.
,
Yang
,
W.
,
Zhao
,
F.
,
Yu
,
W.
, and
Mohan
,
B.
,
2017
, “
Effects of Triangular and Ramp Injection Rate-Shapes on the Performance and Emissions of a Kerosene-Diesel Fueled Direct Injection Compression Ignition Engine: A Numerical Study
,”
Appl. Therm. Eng.
,
110
, pp.
1401
1410
.10.1016/j.applthermaleng.2016.09.072
2.
Wang
,
G.
,
Yu
,
W.
,
Li
,
X.
, and
Yang
,
R.
,
2020
, “
Influence of Fuel Injection and Intake Port on Combustion Characteristics of Controllable Intake Swirl Diesel Engine
,”
Fuel
,
262
, p.
116548
.10.1016/j.fuel.2019.116548
3.
Luo
,
T.
,
Jiang
,
S.
,
Moro
,
A.
,
Wang
,
C.
,
Zhou
,
L.
, and
Luo
,
F.
,
2018
, “
Measurement and Validation of Hole-to-Hole Fuel Injection Rate From a Diesel Injector
,”
Flow Meas. Instrum.
,
61
, pp.
66
78
.10.1016/j.flowmeasinst.2018.03.014
4.
Huang
,
W.
,
Moon
,
S.
,
Gao
,
Y.
,
Li
,
Z.
, and
Wang
,
J.
,
2017
, “
Eccentric Needle Motion Effect on Near-Nozzle Dynamics of Diesel Spray
,”
Fuel
,
206
, pp.
409
419
.10.1016/j.fuel.2017.06.012
5.
Battistoni
,
M.
,
Som
,
S.
, and
Powell
,
C. F.
,
2019
, “
Highly Resolved Eulerian Simulations of Fuel Spray Transients in Single and Multi-Hole Injectors: Nozzle Flow and Near-Exit Dynamics
,”
Fuel
,
251
, pp.
709
729
.10.1016/j.fuel.2019.04.076
6.
Chiatti
,
G.
,
Chiavola
,
O.
,
Palazzoni
,
M.
, and
Palmieri
,
F.
,
2015
, “
Diesel Spray Modeling Under Off-Axis Needle Displacement
,”
SAE
Paper No. 2015-01-0922.10.4271/2015-01-0922
7.
Chiavola
,
O.
, and
Palmieri
,
F.
,
2017
, “
On a Modified VCO Nozzle Layout for Diesel Common Rail Injectors Under Actual Needle Displacement
,”
Energy Procedia
,
126
, pp.
1027
1034
.10.1016/j.egypro.2017.08.309
8.
Salvador
,
F. J.
,
Martínez-López
,
J.
,
Caballer
,
M.
, and
De Alfonso
,
C.
,
2013
, “
Study of the Influence of the Needle Lift on the Internal Flow and Cavitation Phenomenon in Diesel Injector Nozzles by CFD Using RANS Methods
,”
Energy Convers. Manag.
,
66
, pp.
246
256
.10.1016/j.enconman.2012.10.011
9.
Wang
,
C.
,
Moro
,
A.
,
Xue
,
F.
,
Wu
,
X.
, and
Luo
,
F.
,
2018
, “
The Influence of Eccentric Needle Movement on Internal Flow and Injection Characteristics of a Multi-Hole Diesel Nozzle
,”
Int. J. Heat Mass Transfer
,
117
, pp.
818
834
.10.1016/j.ijheatmasstransfer.2017.10.057
10.
Moro
,
A.
,
Luo
,
T.
,
Wang
,
C.
, and
Luo
,
F.
,
2019
, “
Eccentric Needle Displacement Effect on Spray Formation From a Multi Orifice Diesel Injector
,”
Heat Mass Transfer
,
55
(
9
), pp.
2623
2635
.10.1007/s00231-019-02584-3
11.
Salvador
,
F. J.
,
Martínez-López
,
J.
,
Romero
,
J.-V.
, and
Roselló
,
M.-D.
,
2014
, “
Study of the Influence of the Needle Eccentricity on the Internal Flow in Diesel Injector Nozzles by Computational Fluid Dynamics Calculations
,”
Int. J. Comput. Math.
,
91
(
1
), pp.
24
31
.10.1080/00207160.2013.770483
12.
Torelli
,
R.
,
Som
,
S.
,
Pei
,
Y.
,
Zhang
,
Y.
, and
Traver
,
M.
,
2017
, “
Influence of Fuel Properties on Internal Nozzle Flow Development in a Multi-Hole Diesel Injector
,”
Fuel
,
204
, pp.
171
184
.10.1016/j.fuel.2017.04.123
13.
He
,
Z.
,
Xuan
,
T.
,
Xue
,
Y.
,
Wang
,
Q.
, and
Zhang
,
L.
,
2014
, “
A Numerical Study of the Effects of Injection Rate Shape on Combustion and Emission of Diesel Engines
,”
Therm. Sci.
,
18
(
1
), pp.
67
78
.10.2298/TSCI130810013H
14.
Yao
,
C.
,
Geng
,
P.
,
Yin
,
Z.
,
Hu
,
J.
,
Chen
,
D.
, and
Ju
,
Y.
,
2016
, “
Impacts of Nozzle Geometry on Spray Combustion of High Pressure Common Rail Injectors in a Constant Volume Combustion Chamber
,”
Fuel
,
179
, pp.
235
245
.10.1016/j.fuel.2016.03.097
15.
Zhang
,
X.
,
He
,
Z.
,
Wang
,
Q.
,
Tao
,
X.
,
Zhou
,
Z.
,
Xia
,
X.
, and
Zhang
,
W.
,
2018
, “
Effect of Fuel Temperature on Cavitation Flow Inside Vertical Multi-Hole Nozzles and Spray Characteristics With Different Nozzle Geometries
,”
Exp. Therm. Fluid Sci.
,
91
, pp.
374
387
.10.1016/j.expthermflusci.2017.06.006
16.
Xue
,
F.
,
Luo
,
F.
,
Cui
,
H.
,
Moro
,
A.
, and
Zhou
,
L.
,
2017
, “
Numerical Analyses of Transient Flow Characteristics Within Each Nozzle Hole of an Asymmetric Diesel Injector
,”
Int. J. Heat Mass Transfer
,
104
, pp.
18
27
.10.1016/j.ijheatmasstransfer.2016.08.027
17.
Salvador
,
F. J.
,
Lopez
,
J. J.
,
De la Morena
,
J.
, and
Crialesi-Esposito
,
M.
,
2018
, “
Experimental Investigation of the Effect of Orifices Inclination Angle in Multihole Diesel Injector Nozzles. Part 1 – Hydraulic Performance
,”
Fuel
,
213
, pp.
207
214
.10.1016/j.fuel.2017.04.019
18.
Payri
,
R.
,
Salvador
,
F. J.
,
De la Morena
,
J.
, and
Pagano
,
V.
,
2018
, “
Experimental Investigation of the Effect of Orifices Inclination Angle in Multihole Diesel Injector Nozzles: Part 2—Spray Characteristics
,”
Fuel
,
213
, pp.
215
221
.10.1016/j.fuel.2017.07.076
19.
Pelletingeas
,
A.
,
Dufresne
,
L.
, and
Seers
,
P.
,
2016
, “
Characterization of Flow Structures in a Diesel Injector for Different Needle Lifts and a Fluctuating Injection Pressure
,”
ASME J. Fluids Eng.
,
138
(
8
), p.
081105
.10.1115/1.4033125
20.
Moon
,
S.
,
Zhang
,
X.
,
Gao
,
J.
,
Fezzaa
,
K.
,
Durfresne
,
E.
,
Wang
,
J.
,
Xie
,
X.
,
Wang
,
F.
, and
Lai
,
M.-C.
,
2015
, “
Morphological Exploration of Emerging Jet Flows From Multi-Hole Diesel Injectors at Different Needle Lifts
,”
At. Sprays
,
25
(
5
), pp.
375
396
.10.1615/AtomizSpr.2015011058
21.
Moon
,
S.
,
Gao
,
Y.
,
Park
,
S. H.
,
Wang
,
J.
,
Kurimoto
,
N.
, and
Nishijima
,
Y.
,
2015
, “
Effect of the Number and Position of Nozzle Holes on In- and Near-Nozzle Dynamic Characteristics of Diesel Injection
,”
Fuel
,
150
, pp.
112
122
.10.1016/j.fuel.2015.01.097
22.
Kastengren
,
A. L.
,
Powell
,
C. F.
,
Liu
,
Z.
,
Fezzaa
,
K.
, and
Wang
,
J.
,
2009
, “
High-Speed X-Ray Imaging of Diesel Injector Needle Motion
,”
ASME
Paper No. ICES2009-76032.10.1115/ICES2009-76032
23.
Huang
,
W.
,
Moon
,
S.
, and
Ohsawa
,
K.
,
2016
, “
Near-Nozzle Dynamics of Diesel Spray Under Varied Needle Lifts and Its Prediction Using Analytical Model
,”
Fuel
,
180
, pp.
292
300
.10.1016/j.fuel.2016.04.042
24.
Salvador
,
F. J.
,
De la Morena
,
J.
,
Crialesi-Esposito
,
M.
, and
Martínez-López
,
J.
,
2018
, “
Comparative Study of the Internal Flow in Diesel Injection Nozzles at Cavitating Conditions at Different Needle Lifts With Steady and Transient Simulations Approaches
,”
Proc. Inst. Mech. Eng. Part D J. Autom. Eng.
,
232
(
8
), pp.
1060
1078
.10.1177/0954407017725672
25.
Viera
,
J. P.
,
Payri
,
R.
,
Swantek
,
A. B.
,
Duke
,
D. J.
,
Sovis
,
N.
,
Kastengren
,
A. L.
, and
Powell
,
C. F.
,
2016
, “
Linking Instantaneous Rate of Injection to X-Ray Needle Lift Measurements for a Direct-Acting Piezoelectric Injector
,”
Energy Convers. Manag.
,
112
, pp.
350
358
.10.1016/j.enconman.2016.01.038
26.
Arienti
,
M.
, and
Sussman
,
M.
,
2017
, “
A Numerical Study of the Thermal Transient in High-Pressure Diesel Injection
,”
Int. J. Multiph. Flow
,
88
, pp.
205
221
.10.1016/j.ijmultiphaseflow.2016.09.017
27.
Kastengren
,
A. L.
,
Tilocco
,
F. Z.
,
Powell
,
C. F.
,
Manin
,
J.
,
Pickett
,
L. M.
,
Payri
,
R.
, and
Bazyn
,
T.
,
2012
, “
Engine Combustion Network (ECN): Measurements of Nozzle Geometry and Hydraulic Behavior
,”
At. Sprays
,
22
(
12
), pp.
1011
1052
.10.1615/AtomizSpr.2013006309
28.
Ohnishi
,
H.
,
Yoshida
,
T.
,
Arifuku
,
T.
, and
Kadota
,
T.
,
1995
, “
Characteristics of Fuel Discharge in Multihole VCO Nozzle
,”
Trans. Jpn. Soc. Mech. Eng. B
,
61
(
584
), pp.
1554
1559
.10.1299/kikaib.61.1554
29.
Zhang
,
X.
,
Liu
,
J.
, and
Wang
,
J.
,
2016
, “
Effect of Fuel and Nozzle Geometry on the Off-Axis Oscillation of Needle in Diesel Injectors Using High-Speed X-Ray Phase Contrast Imaging
,”
J. Instrum.
,
11
(
05
), pp.
C05015
C05015
.10.1088/1748-0221/11/05/C05015
30.
Battistoni
,
M.
,
Xue
,
Q.
,
Som
,
S.
, and
Pomraning
,
E.
,
2014
, “
Effect of Off-Axis Needle Motion on Internal Nozzle and Near Exit Flow in a Multi-Hole Diesel Injector
,”
SAE Int. J. Fuels Lubr.
,
7
(
1
), pp.
167
182
.10.4271/2014-01-1426
31.
Powell
,
C. F.
,
Kastengren
,
A. L.
,
Liu
,
Z.
, and
Fezzaa
,
K.
,
2009
, “
The Effects of Diesel Injector Needle Motion on Spray Structure
,”
ASME
Paper No. ICEF2009-14076.10.1115/ICEF2009-14076
32.
Kim
,
B.
, and
Park
,
S.
,
2019
, “
Study on in-Nozzle Flow and Spray Behavior Characteristics Under Various Needle Positions and Length-to-Width Ratios of Nozzle Orifice Using a Transparent Acrylic Nozzle
,”
Int. J. Heat Mass Transfer
,
143
, p.
118478
.10.1016/j.ijheatmasstransfer.2019.118478
33.
Payri
,
R.
,
Garcia
,
A.
,
Domenech
,
V.
,
Durrett
,
R. P.
, and
Plazas
,
A. H.
,
2012
, “
An Experimental Study of Gasoline Effects on Injection Rate, Momentum Flux and Spray Characteristics Using a Common Rail Diesel Injection System
,”
Fuel
,
97
, pp.
390
399
.10.1016/j.fuel.2011.11.065
34.
Payri
,
F.
,
Payri
,
R.
,
Salvador
,
F. J.
, and
Gimeno
,
J.
,
2005
, “
Comparison Between Different Hole to Hole Measurement Techniques in a Diesel Injection Nozzle
,”
SAE
Paper No. 2005-01-2094.10.4271/2005-01-2094
35.
Luo
,
F.
,
Jiang
,
S.
,
Moro
,
A.
,
Luo
,
T.
,
Zhou
,
L.
, and
Wu
,
X.
,
2017
, “
The Development of a Data Acquisition System for Measuring the Injection Rate of a Multihole Diesel Injector
,”
Sens. Actuators, A Phys.
,
261
, pp.
166
176
.10.1016/j.sna.2017.04.037
36.
Wu
,
X.
,
Deng
,
J.
,
Cui
,
H.
,
Xue
,
F.
,
Zhou
,
L.
, and
Luo
,
F.
,
2016
, “
Numerical Simulation of Injection Rate of Each Nozzle Hole of Multi-Hole Diesel Injector
,”
Appl. Therm. Eng.
,
108
, pp.
793
797
.10.1016/j.applthermaleng.2016.07.136
37.
Zhou
,
L.
,
Dong
,
S. F.
,
Cui
,
H. F.
,
Wu
,
X.
,
Xue
,
F.
, and
Luo
,
F.
,
2016
, “
Measurements and Analyses on the Transient Discharge Coefficient of Each Nozzle Hole of Multi-Hole Diesel Injector
,”
Sens. Actuators, A Phys.
,
244
, pp.
198
205
.10.1016/j.sna.2016.04.017
38.
Hanjalic
,
K.
,
Popovac
,
M.
, and
Hadžiabdic
,
M.
,
2004
, “
A Robust Near-Wall Elliptic-Relaxation Eddy-Viscosity Turbulence Model for CFD
,”
Int. J. Heat Fluid Flow
,
25
(
6
), pp.
1047
1051
.10.1016/j.ijheatfluidflow.2004.07.005
39.
Billard
,
F.
, and
Laurence
,
D.
,
2012
, “
A Robust k-ε-v2_/k Elliptic Blending Turbulence Model Applied to Near-Wall, Separated and Buoyant Flows
,”
Int. J. Heat Fluid Flow
,
33
(
1
), pp.
45
58
.10.1016/j.ijheatfluidflow.2011.11.003
40.
Li
,
D.
,
Liu
,
S.
,
Wei
,
Y.
,
Liang
,
R.
, and
Tang
,
Y.
,
2018
, “
Numerical Investigation on Transient Internal Cavitating Flow and Spray Characteristics in a Single-Hole Diesel Injector Nozzle: A 3D Method for Cavitation-Induced Primary Break-Up
,”
Fuel
,
233
, pp.
778
795
.10.1016/j.fuel.2018.06.103
41.
Wang
,
C.
,
Adams
,
M.
,
Jin
,
T.
,
Sun
,
Y.
,
Roell
,
A.
,
Luo
,
F.
, and
Gavaises
,
M.
,
2021
, “
An Analytical Model of Diesel Injector's Needle Valve Eccentric Motion
,”
Int. J. Engine Res.
,
2021
(
1
), epub.10.1177/1468087420987367
42.
Torelli
,
R.
,
Matusik
,
K. E.
,
Nelli
,
K. C.
,
Kastengren
,
A. L.
,
Fezzaa
,
K.
,
Powell
,
C. F.
,
Som
,
S.
,
Pei
,
Y.
,
Tzanetakis
,
T.
,
Zhang
,
Y.
,
Traver
,
M.
, and
Cleary
,
D. J.
,
2018
, “
Evaluation of Shot-to-Shot in-Nozzle Flow Variations in a Heavy-Duty Diesel Injector Using Real Nozzle Geometry
,”
SAE Int. J. Fuels Lubr.
,
11
(
4
), pp.
379
295
.10.4271/2018-01-0303
You do not currently have access to this content.