Abstract

The study on similitude modeling method of turboexpander with different working fluids is not only the key technical means and necessary method for the research and development of turboexpander with special working fluids but also an effective way to further expand the application scope of a turboexpander. In this paper, an adapted similitude modeling method (ASMM), which is based on dimensional analysis, actual characteristics of real gas, and seven similitude criteria, is proposed. Based on modeling criterion π4, the new similitude modeling relationship of turboexpander with different gas working fluids is obtained based on rotational speed, inlet total temperature, specific heat ratio, and gas constant. Aiming at the ASMM, the similitude modeling performance of turboexpander with air, methane, CO2, and helium is verified by using the computational fluid dynamics method. The results show that the modeling effects on aerodynamic performance are well predicted in a wide range including the design point (expansion ratio 2.9∼5.0), and the errors of the total-to-total isentropic efficiency, relative equivalent mass flow rate, relative equivalent shaft power are less than 0.74%, 1.94%, and 1.69%, respectively. Methane and CO2 have the best modeling performance, their errors of efficiency, relative equivalent mass flow rate, and relative equivalent shaft power are all less than 0.5%; Furthermore, the ASMM also has pinpoint accuracy with the prediction of the internal flow field, which provides a good idea for further research on special working fluid turboexpander and an approach to expand the application scope of turboexpanders.

References

1.
Ma
,
L.
,
Xue
,
S. Q.
, and
Yan
,
W. Z.
,
2014
, “
Application of Residual Pressure Turbine Power Generation Technology in Ammonia Process
,”
Mod. Chem. Ind.
,
34
(
6
), pp.
118
121
.https://www.semanticscholar.org/paper/Application-of-residual-pressure-turbine-power-in-Lian/655a73c2428cdda394ad5992b74d0fa0a6eb4613
2.
Liu
,
L. Q.
, and
Chen
,
C. Z.
,
1996
, “
An Evaluation of the Method of Similarity Modeling Tests Using on Turbomachines
,”
Cryogenics
, (
4
), pp.
43
47
.
3.
Yu
,
H. S.
,
Feng
,
X.
, and
Wang
,
Y. F.
,
2016
, “
Working Fluid Selection for Organic Rankine Cycle (ORC) Considering the Characteristics of Waste Heat Sources
,”
Ind. Eng. Chem. Res.
,
55
(
5
), pp.
1309
1321
.10.1021/acs.iecr.5b02277
4.
Yu
,
H. S.
,
Kim
,
D.
, and
Gundersen
,
T.
,
2019
, “
A Study of Working Fluids for Organic Rankine Cycles (ORCs) Operating Across and Below Ambient Temperature to Utilize Liquefied Natural Gas (LNG) Cold Energy
,”
Energy
,
167
, pp.
730
739
.10.1016/j.energy.2018.11.021
5.
Shao
,
Z. Y.
,
Li
,
W.
,
Wang
,
X.
,
Zhang
,
X. H.
, and
Chen
,
H. S.
,
2020
, “
Analysis of Shroud Cavity Leakage in a Radial Turbine for Optimal Operation in Compressed Air Energy Storage System
,”
ASME J. Eng. Gas Turbine Power
,
142
(
7
), p.
071005
.10.1115/1.4047280
6.
Wang
,
X.
,
Li
,
W.
,
Wang
,
X.
,
Zhang
,
X. H.
,
Zhu
,
Y. L.
, and
Chen
,
H.
, S.,
2019
, “
Flow Analysis and Performance Improvement of a Radial Inflow Turbine With Back Cavity Under Variable Operation Condition of Compressed Air Energy Storage
,”
Int. J. Energy Res.
,
43
(
12
), pp.
6396
6408
.10.1002/er.4425
7.
Pei
,
G.
,
Li
,
J.
,
Li
,
Y. Z.
,
Wang
,
D. Y.
, and
Ji
,
J.
,
2011
, “
Construction and Dynamic Test of a Small-Scale Organic Rankine Cycle
,”
Energy
,
36
(
5
), pp.
3215
3223
.10.1016/j.energy.2011.03.010
8.
Nguyen
,
V. M.
,
Doherty
,
P. S.
, and
Riffat
,
S. B.
,
2001
, “
Development of a Prototype Low-Temperature Rankine Cycle Electricity Generation System
,”
Appl. Therm. Eng.
,
21
(
2
), pp.
169
181
.10.1016/S1359-4311(00)00052-1
9.
Li
,
J.
,
Pei
,
G.
,
Li
,
Y. Z.
,
Wang
,
D. Y.
, and
Ji
,
J.
,
2012
, “
Energetic and Exergetic Investigation of an Organic Rankine Cycle at Different Heat Source Temperatures
,”
Energy
,
38
(
1
), pp.
85
95
.10.1016/j.energy.2011.12.032
10.
Roskosch
,
D.
,
Venzik
,
V.
, and
Atakan
,
B.
,
2019
, “
Fluid Retrofit for Existing Vapor Compression Refrigeration Systems and Heat Pumps: Evaluation of Different Models
,”
Energies
,
12
(
12
), p.
2417
.10.3390/en12122417
11.
Hewitt
,
N. J.
,
McMullan
,
J. T.
,
Henderson
,
P. C.
, and
Mongey
,
B.
,
2001
, “
Advanced Cycles and Replacement Working Fluids in Heat Pumps
,”
Appl. Therm. Eng.
,
21
(
2
), pp.
237
248
.10.1016/S1359-4311(00)00053-3
12.
Balje
,
O. E.
,
1962
, “
A Study on Design Criteria and Matching of Turbomachines: Part A—Similarity Relations and Design Criteria of Turbines
,”
ASME J. Eng. Gas Turbines Power
,
84
(
1
), pp.
83
102
.10.1115/1.3673386
13.
Balje
,
O. E.
, and
Japikse
,
D.
,
1981
, “
Turbomachines—A Guide to Design Selection and Theory
,”
ASME J. Fluid Eng.
,
103
(
4
), pp.
644
644
.10.1115/1.3241788
14.
Linhardt
,
H. D.
,
1973
, “
Process Application and Design of Large Power Output Turboexpanders
,”
ASME J. Eng. Ind.
,
95
(
1
), pp.
227
232
.10.1115/1.3438107
15.
Liu
,
L. Q.
,
Xiong
,
L. Y.
,
Hou
,
Y.
, and
Chen
,
C. Z.
,
1998
, “
Decisive Similarity Criterion for Turbine Expanders Using the Same Working Fluid
,”
Cryogenics
, (
6
), pp.
3
5
.
16.
Forster
,
V. T.
,
1974
, “
Development of Experimental Turbines FAcilities for Testing Scaled Models in Air or Freon
,”
Heat and Fluid Flow in Steam and Gas Turbine Plant
,
University of Warwick
,
Coventry
, UK, pp.
84
93
.
17.
Wang
,
Z. Q.
, and
Qin
,
R.
,
1988
,
Principles of Turbomachinery
,
China Machine Press
,
Beijing, China
.
18.
Ling
,
Z. G.
,
1976
, “
Compilation and Model-Level Generalization of Turbine Modeling Test Data
,”
Adv. Mech.
, (
2
), pp.
1
9
.
19.
Shu
,
S. Z.
,
1991
,
Principles of Turbomachinery
,
Tsinghua University Press
,
Beijing, China
.
20.
Митрохин
,
B. T.
,
1980
,
Selection and Calculation of Steady-State and Dynamic Parameters for Radial Turbines
,
National Defence Industry Press
,
Beijing, China
.
21.
Guo
,
Y. Y.
,
1988
, “
Application of Similarity Theory in Performance Test of Low Temperature Turbine Expander
,”
J. Refrig.
, (
2
), pp.
1
12
.
22.
Liu
,
L. Q.
,
Xiong
,
L. Y.
,
Hou
,
Y.
,
Wu
,
G.
,
Lin
,
M. F.
, and
Chen
,
C. Z.
,
1996
, “
Study on the Similarity Model Test Method of Helium Turbine Expander
,”
Cryog. Supercond.
, (
4
), pp.
51
55
.
23.
Hu
,
C. B.
,
1999
, “
Simulation and Experimental Study of Cryogenic Turbine of Helium System in Large Space Environment Simulator
,”
Spacecr. Environ. Eng.
, (
2
), pp.
45
51
.
24.
Liu
,
L. Q.
,
Xiong
,
L. Y.
,
Hou
,
Y.
, and
Chen
,
C. Z.
,
1998
, “
Application of Artificial Neural Network in Turbine Expander Performance Conversion
,”
Low Temp. Spec. Gases
, (
3
), pp.
3
5
.
25.
Wang
,
N. A.
,
Sun
,
X. J.
, and
Huang
,
D. G.
,
2020
, “
Design and Analysis of a Single-Stage Transonic Centrifugal Turbine for Organic Rankine Cycle (ORC)
,”
J. Therm. Sci.
,
29
(
1
), pp.
32
42
.10.1007/s11630-019-1079-7
26.
Bao
,
J. J.
, and
Li
,
Z.
,
2013
, “
A Review of Working Fluid and Expander Selections for Organic Rankine Cycle
,”
Renewable Sustainable Energy Rev.
,
24
, pp.
325
342
.10.1016/j.rser.2013.03.040
27.
Fiaschi
,
D.
,
Manfrida
,
G.
, and
Maraschiello
,
F.
,
2012
, “
Thermo-Fluid Dynamics Preliminary Design of Turboexpanders for ORC Cycles
,”
Appl. Energy
,
97
, pp.
601
608
.10.1016/j.apenergy.2012.02.033
28.
Inoue
,
N.
,
Takeuchi
,
T.
,
Kaneko
,
A.
, Uchimura, T., Irie, K., and
Watanabe
,
H.
,
2011
, “
Development of Electric Power Units Driven by Waste Heat
,”
Trans. Jpn. Soc. Refrig. Air Cond. Eng.
,
22
(
3
), pp.
357
368
.https://ui.adsabs.harvard.edu/abs/2011TRACE..22..357I/
29.
Kang
,
S. H.
,
2012
, “
Design and Experimental Study of ORC (Organic Rankine Cycle) and Radial Turbine Using R245fa Working Fluid
,”
Energy
,
41
(
1
), pp.
514
524
.10.1016/j.energy.2012.02.035
30.
Rayegan
,
R.
, and
Tao
,
Y. X.
,
2011
, “
A Procedure to Select Working Fluids for Solar Organic Rankine Cycles (ORCs)
,”
Renewable Energy
,
36
(
2
), pp.
659
670
.10.1016/j.renene.2010.07.010
31.
Seng Wong
,
C.
, and
Krumdieck
,
S.
,
2016
, “
Scaling of Gas Turbine From Air to Refrigerants for Organic Rankine Cycle Using Similarity Concept
,”
ASME J. Eng. Gas Turbines Power
,
138
(
6
), p.
061701
.10.1115/1.4031641
32.
White
,
M.
, and
Sayma
,
A. I.
,
2015
, “
The Application of Similitude Theory for the Performance Prediction of Radial Turbines Within Small-Scale Low-Temperature Organic Rankine Cycles
,”
ASME J. Eng. Gas Turbines Power
,
137
(
12
), p.
122605
.10.1115/1.4030836
33.
Alshammari
,
F.
,
Karvountzis-Kontakiotis
,
A.
,
Pesiridis
,
A.
, and
Giannakakis
,
P.
,
2018
, “
Off-Design Performance Prediction of Radial Turbines Operating With Ideal and Real Working Fluids
,”
Energy Convers. Manage.
,
171
, pp.
1430
1439
.10.1016/j.enconman.2018.06.093
34.
Deligant
,
M.
,
Sauret
,
E.
,
Danel
,
Q.
, and
Bakir
,
F.
,
2020
, “
Performance Assessment of a Standard Radial Turbine as Turbo Expander for an Adapted Solar Concentration ORC
,”
Renewable Energy
,
147
, pp.
2833
2841
.10.1016/j.renene.2018.10.019
35.
Zou
,
Z. X.
,
1984
,
Application of Similarity Theory in Turbomachinery Model Research
,
Science Press
,
Beijing, China
.
36.
Simonyi
,
P. S.
,
Roelke
,
R. J.
,
Stabe
,
R. G.
,
Nowlin
,
B. C.
, and
DiCiccco
,
D.
,
1995
, “
Aerodynamic Evaluation of Two Compact Radial-Inflow Turbine Rotors
,” NASA, Cleveland, OH, NASA Report No. NASA TP-3514.
37.
Wang
,
X.
,
Li
,
W.
,
Zhang
,
X. H.
,
Zhu
,
Y. L.
,
Zuo
,
Z. T.
, and
Chen
,
H. S.
,
2019
, “
Efficiency Improvement of a CAES Low Aspect Ratio Radial Inflow Turbine by NACA Blade Profile
,”
Renewable Energy
,
138
, pp.
1214
1231
.10.1016/j.renene.2019.02.034
38.
Harinck
,
J.
,
Guardone
,
A.
, and
Colonna
,
P.
,
2009
, “
The Influence of Molecular Complexity on Expanding Flows of Ideal and Dense Gases
,”
Phys. Fluids
,
21
(
8
), pp.
086101
086482
.10.1063/1.3194308
39.
Anders
,
J. B.
,
Anderson
,
W. K.
, and
Murthy
,
A. V.
,
1999
, “
Transonic Similarity Theory Applied to a Supercritical Airfoil in Heavy Gas
,”
J. Aircr.
,
36
(
6
), pp.
957
964
.10.2514/2.2557
You do not currently have access to this content.