Abstract

Since it is difficult to directly measure the transient stress of a steam turbine rotor in operation, a rotor stress field reconstruction model based on the deep fully convolutional network for the startup process is proposed. The stress distribution in the rotor can be directly predicted based on the temperature of a few measurement points. First, the finite element model is used to accurately simulate the temperature and stress field of the rotor startup process, generating training data for the deep learning method. Next, data of only 15 temperature measurement points are arranged to predict the stress distribution in the critical area of the rotor surface, with the accuracy (R2-score) reaching 0.997. The time cost of the trained neural network model at a single case is 1.42 s in CPUs and 0.11 s in GPUs, shortened by 97.3% and 99.8% with comparison to finite element analysis, respectively. In addition, the influence of the number of temperature measurement points and the training size is discussed, verifying the stability of the model. With the advantages of fast calculation, high accuracy, and strong stability, the fast reconstruction model can effectively realize the stress prediction during startup processes, resulting in the possibility of a real-time diagnosis of rotor strength in operation.

References

1.
Kral
,
C.
,
Habetler
,
T. G.
,
Harley
,
R. G.
,
Pirker
,
F.
,
Pascoli
,
G.
,
Oberguggenberger
,
H.
, and
Fenz
,
C.-J. M.
,
2004
, “
Rotor Temperature Estimation of Squirrel-Cage Induction Motors by Means of a Combined Scheme of Parameter Estimation and a Thermal Equivalent Model
,”
Ind. Appl., IEEE Trans.
,
40
(
4
), pp.
1049
1057
.10.1109/TIA.2004.830759
2.
Yang
,
F.
,
Hou
,
L.
,
Yi
,
P.
, and Wang, J.,
2009
, “
Evaluation of Transient Temperature Fields for High-Pressure Steam Turbine Rotor
,”
International Conference on Mechanical Engineering and Mechanics
, Beijing, China, pp.
834
838
.https://global.cnki.net/kcms/detail/detail.aspx?filename=NLJX200910001150&dbcode=IPFD&dbname=IPFD2014&v=
3.
Song
,
Z.
, and
Su
,
Y.
,
2015
, “
Analysis of the Effect on Steam Turbine Rotor of Load Variation for Cogeneration Steam Turbine
,”
International Conference on Intelligent Systems Research and Mechatronics Engineering
, Zhengzhou, China, Apr. 11–13, pp.
1603
1607
.10.2991/isrme-15.2015.325
4.
Łuczyński
,
P.
,
Toebben
,
D.
,
Pehle
,
L.
,
Wirsum
,
M.
,
Mohr
,
W. F. D.
, and
Helbig
,
K.
,.
2019
, “
Thermostructural Analysis of Steam Turbine in Prewarming Operation With Hot Air
,”
ASME J. Eng. Gas Turbines Power
,
141
(
11
), p.
111004
.10.1115/1.4044311
5.
Zhao
,
X.
,
He
,
Q.
, and
Du
,
D.
,
2014
, “
Thermal Stress Analysis of Rotor of Ultra Supercritical Steam Turbine
,”
Appl. Mech. Mater.
,
494–495
, pp.
529
532
.10.4028/www.scientific.net/AMM.494-495.529
6.
Leyzerovich
,
A.
,
2007
, “
Reduce Stress With Proper on-Line Rotor Temperature Monitoring
,”
Power
,
151
(
5
), p. 48+.https://www.researchgate.net/publication/293784006_Reduce_stress_with_proper_on-line_rotor_temperature_monitoring
7.
Liu
,
Y.
,
Hao
,
R.
, and
Gao
,
J.
,
2008
, “
On-Line Calculation Model of Thermal Stress of Steam Turbine Rotor Based on Integrated Modular Modeling Software
,”
J. North China Electric Power Univ.
,
35
(
4
), pp.
33
37
(in Chinese).10.3969/j.issn.1007-2691.2008.04.007
8.
Antonin
,
B.
,
Jan
,
J.
, and
Jindrich
,
L.
,
2015
, “
Rotor Thermal Stress Monitoring in Steam Turbines
,”
J. Phys.: Conf. Ser.
, 659, p.
012044
.10.1088/1742-6596/659/1/012044
9.
Wang
,
G.
,
2015
,
Research on the on-Line Monitoring of Thermal Stress for Steam Turbine Rotor
,
Shenyang Institute of Engineering
,
Shenyang
(in Chinese).
10.
Liang
,
H.
,
Song
,
L.
, and
Li
,
X.
,
2019
, “
The Rotate Stress of Steam Turbine Prediction Method Based on Stacking Ensemble Learning
,”
IEEE International Symposium on High Assurance Systems Engineering
, Hangzhou, China, Jan. 3–5, pp.
146
149
.10.1109/HASE.2019.00030
11.
Shi
,
J.
,
Yu
,
Y.
,
Deng
,
Z.
, and Zhu, Z.,
2007
, “
A Neural Network Based Method for on-Line Calculation of Equivalent Stresses in Steam Turbine Rotors
,”
International Conference on Power Engineering
, Hangzhou, China, pp.
368
371
.10.1007/978-3-540-76694-0_66
12.
Fast
,
M.
, and
Palme
,
T.
,
2010
, “
Application of Artificial Neural Networks to the Condition Monitoring and Diagnosis of a Combined Heat and Power Plant
,”
Energy
,
35
(
2
), pp.
1114
1120
.10.1016/j.energy.2009.06.005
13.
Rzadkowski
,
R.
,
Dominiczak
,
K.
,
Radulski
,
W.
, and Szczepanik, R.,
2015
, “
Thermoelastic Steam Turbine Rotor Control Based on Neural Network
,”
J. Phys.: Conf. Ser.
, 662, p.
012021
.10.1007/978-3-319-06590-8_187
14.
Dominiczak
,
K.
,
Rzadkowski
,
R.
, and
Radulski
,
W.
,
2016
, “
Temperature and Stress Steam Turbine Rotor Control Based on Neural Network
,”
J. Vib. Eng. Technol.
,
4
(
4
), pp.
319
326
.https://www.researchgate.net/publication/308051656_Temperature_and_stress_steam_turbine_rotor_control_based_on_neural_network
15.
Hamzaoui
,
Y. E.
,
Rodríguez
,
J. A.
,
Hernández
,
J. A.
, and
Salazar
,
V.
,.
2015
, “
Optimization of Operating Conditions for Steam Turbine Using an Artificial Neural Network Inverse
,”
Appl. Therm. Eng.
,
75
, pp.
648
657
.10.1016/j.applthermaleng.2014.09.065
16.
Nowak
,
G.
, and
Rusin
,
A.
,
2016
, “
Using the Artificial Neural Network to Control the Steam Turbine Heating Process
,”
Appl. Therm. Eng.
,
108
, pp.
204
210
.10.1016/j.applthermaleng.2016.07.129
17.
Xin
,
J.
,
Yu
,
R.
,
Liu
,
D.
, and
Zhang
,
Y.
,
2019
, “
Thermal Stress Deformation Prediction for Rotary Air-Preheater Rotor Using Deep Learning Approach
,”
Int. J. Modell. Identif. Control
,
31
(
4
), pp.
293
302
.10.1504/IJMIC.2019.099824
18.
Lopez
,
R.
, and
Onate
,
E.
,
2006
, “
A Variational Formulation for the Multilayer Perceptron
,”
Lecture Notes In Computer Science
, 4131, pp.
159
168
.10.1007/11840817_17
19.
Long
,
J.
,
Shelhamer
,
E.
, and
Darrell
,
T.
,
2015
, “
Fully Convolutional Networks for Semantic Segmentation
,”
IEEE Conference on Computer Vision and Pattern Recognition
, Boston, MA, June 7–12, pp.
3431
3440
.https://www.cvfoundation.org/openaccess/content_cvpr_2015/papers/Long_Fully_Convolutional_Networks_2015_CVPR_paper.pdf
20.
Yang
,
Y.
,
Dong
,
J.
,
Sun
,
X.
,
Lima
,
E.
,
Mu
,
Q.
, and
Wang
,
X.
,.
2018
, “
A CFCC-LSTM Model for Sea Surface Temperature Prediction
,”
IEEE Geosci. Remote Sensing Lett.
,
15
(
2
), pp.
207
211
.10.1109/LGRS.2017.2780843
21.
Shi
,
X.
,
Gao
,
Z.
,
Lausen
,
L.
, Wang, H., Yeung, D., Wong, W., and Woo, W.,
2017
, “
Deep Learning for Precipitation Nowcasting: A Benchmark and a New Model
,”
31st Annual Conference on Neural Information Processing Systems (NIPS)
, Long Beach, CA, Dec. 4–9.https://www.researchgate.net/publication/317558562_Deep_Learning_for_Precipitation_Nowcasting_A_Benchmark_and_A_New_Model
22.
Amato
,
F.
,
Guignard
,
F.
,
Robert
,
S.
, and
Kanevski
,
M.
,.
2020
, “
A Novel Framework for Spatio-Temporal Prediction of Environmental Data Using Deep Learning
,”
Sci. Rep.
,
10
(
1
), p.
22243
.10.1038/s41598-020-79148-7
23.
Fukami
,
K.
,
Fukagata
,
K.
, and
Taira
,
K.
,
2021
, “
Machine-Learning-Based Spatio-Temporal Super Resolution Reconstruction of Turbulent Flows
,”
J. Fluid Mech.
,
909
, p.
A9
.10.1017/jfm.2020.948
24.
Tianyuan
,
L.
,
Yunzhu
,
L.
,
Qi
,
J.
, Xie, Y., and Zhang, D., Xie, Y., and Zhang, D.,
2021
, “
Supervised Learning Method for the Physical Field Reconstruction in a Nanofluid Heat Transfer Problem
,”
Int. J. Heat Mass Transfer
,
165
, p.
120684
.10.1016/j.ijheatmasstransfer.2020.120684
25.
Tianyuan
,
L.
,
Yunzhu
,
L.
,
Yonghui
,
X.
, and Zhang, D.,
2020
, “
Deep Learning for Nanofluid Field Reconstruction in Experimental Analysis
,”
IEEE Access
,
8
, pp.
64692
64706
.10.1109/ACCESS.2020.2979794
26.
Yan
,
Z.
,
Danmei
,
X.
,
Yongxing
,
F.
, Feng, Y., and Liu, S..,
2014
, “
Research on Precision Correcting for Heat Transfer Coefficient of Steam Turbine
,”
ASME
Paper No. POWER2014-32043.10.1115/POWER2014-32043
You do not currently have access to this content.