Abstract

In the coming years, decentralized power generation systems with renewables are expected to take a leading role, and micro gas turbines will serve as backup sources to compensate for times of low inputs from other sources. In order to deal with the unpredictable energy inputs from renewables, the micro gas turbine must be capable of running under varying load conditions and making fast transitions between them. The operation of a micro gas turbine in an integrated microgrid (MG) has the potential to reduce operational costs and ensure the delivery of demanded heat and power to consumers. This paper investigates the operation of a micro gas turbine in a MG, serving as a supplementary power source for a municipal building. The building's required energy is initially provided by wind turbine power, and the micro gas turbine serves as a backup source during times of wind power deficiency. The micro gas turbine can operate using a natural gas/hydrogen fuel blend ranging from zero to 100% hydrogen. Furthermore, a water electrolyzer with a hydrogen tank is available to operate as a storage system within the MG. The study's results demonstrate the economic and environmental benefits of using hydrogen storage and optimizing operational planning in the MG. The primary objective of the paper is to highlight the feasibility and benefits of employing micro gas turbines and hydrogen storage systems within a MG as a renewable energy backup power source.

References

1.
International Energy Agency
,
2019
, “
Global Energy & CO2 Status Report - The Latest Trends in Energy and Emissions in 2018
,” IEA, Paris, France.https://iea.blob.core.windows.net/assets/23f9eb39-7493-4722-aced-61433cbffe10/Global_Energy_and_CO2_Status_Report_2018.pdf
2.
Seljom
,
P.
,
Rosenberg
,
E.
,
Fidje
,
A.
,
Haugen
,
J. E.
,
Meir
,
M.
,
Rekstad
,
J.
, and
Jarlset
,
T.
,
2011
, “
Modelling the Effects of Climate Change on the Energy System—A Case Study of Norway
,”
Energy Policy
,
39
(
11
), pp.
7310
7321
.10.1016/j.enpol.2011.08.054
3.
Chen
,
D.
,
Facchini
,
M. C.
,
Frame
,
D.
,
Mahowald
,
N.
, and
Winther
,
J.-G.
,
2013
, “
Introduction
,”
Climate Change 2013: The Physical Science Basis
,
Y.
Ding
,
L.
Mearns
, and
P.
Wadhams
, eds.,
Cambridge University Press
,
Cambidge, UK
, pp.
119
158
.
4.
International Energy Agency
,
2020
, “
Global CO2 Emissions in 2019 – Analysis - IEA
,” IEA, Paris, France, accessed Sept. 2022, https://www.iea.org/articles/global-co2-emissions-in-2019
5.
Kempenaar
,
A.
,
Puerari
,
E.
,
Pleijte
,
M.
, and
van Buuren
,
M.
,
2021
, “
Regional Design Ateliers on ‘Energy and Space’: Systemic Transition Arenas in Energy Transition Processes
,”
Eur. Plann. Stud.
,
29
(
4
), pp.
762
778
.10.1080/09654313.2020.1781792
6.
Wallsgrove
,
R.
,
Woo
,
J.
,
Lee
,
J. H.
, and
Akiba
,
L.
,
2021
, “
The Emerging Potential of Microgrids in the Transition to 100% Renewable Energy Systems
,”
Energies (Basel)
,
14
(
6
), p.
1687
.10.3390/en14061687
7.
Hirsch
,
A.
,
Parag
,
Y.
, and
Guerrero
,
J.
,
2018
, “
Microgrids: A Review of Technologies, Key Drivers, and Outstanding Issues
,”
Renewable Sustainable Energy Rev.
,
90
, pp.
402
411
.10.1016/j.rser.2018.03.040
8.
Roslan
,
M. F.
,
Hannan
,
M. A.
,
Ker
,
P. J.
,
Muttaqi
,
K. M.
, and
Mahlia
,
T. M. I.
,
2021
, “
Optimization Algorithms for Energy Storage Integrated Microgrid Performance Enhancement
,”
J. Energy Storage
,
43
, p.
103182
.10.1016/j.est.2021.103182
9.
Parag
,
Y.
, and
Ainspan
,
M.
,
2019
, “
Sustainable Microgrids: Economic, Environmental and Social Costs and Benefits of Microgrid Deployment
,”
Energy Sustainable Dev.
,
52
, pp.
72
81
.10.1016/j.esd.2019.07.003
10.
Akorede
,
M. F.
,
Hizam
,
H.
, and
Pouresmaeil
,
E.
,
2010
, “
Distributed Energy Resources and Benefits to the Environment
,”
Renewable Sustainable Energy Rev.
,
14
(
2
), pp.
724
734
.10.1016/j.rser.2009.10.025
12.
Raya-Armenta
,
J. M.
,
Bazmohammadi
,
N.
,
Avina-Cervantes
,
J. G.
,
Sáez
,
D.
,
Vasquez
,
J. C.
, and
Guerrero
,
J. M.
,
2021
, “
Energy Management System Optimization in Islanded Microgrids: An Overview and Future Trends
,”
Renewable Sustainable Energy Rev.
,
149
, p.
111327
.10.1016/j.rser.2021.111327
13.
Khan
,
S.
,
Paul
,
D.
,
Momtahan
,
P.
, and
Aloqaily
,
M.
,
2018
, “
Artificial Intelligence Framework for Smart City Microgrids: State of the Art, Challenges, and Opportunities
,”
2018 Third International Conference on Fog and Mobile Edge Computing (FMEC)
, Barcelona, Spain, Apr. 23–26, pp.
283
288
.10.1109/FMEC.2018.8364080
14.
García
,
P.
,
Torreglosa
,
J. P.
,
Fernández
,
L. M.
, and
Jurado
,
F.
,
2013
, “
Optimal Energy Management System for Stand-Alone Wind Turbine/Photovoltaic/Hydrogen/Battery Hybrid System With Supervisory Control Based on Fuzzy Logic
,”
Int. J. Hydrogen Energy
,
38
(
33
), pp.
14146
14158
.10.1016/j.ijhydene.2013.08.106
15.
Marinelli
,
M.
,
Sossan
,
F.
,
Costanzo
,
G. T.
, and
Bindner
,
H. W.
,
2014
, “
Testing of a Predictive Control Strategy for Balancing Renewable Sources in a Microgrid
,”
IEEE Trans. Sustain. Energy
,
5
(
4
), pp.
1426
1433
.10.1109/TSTE.2013.2294194
16.
Mohamed
,
F.
,
2006
,
Microgrid Modelling and Simulation
,
Helsinki University of Technology
,
Otaniemi, Keilaniemi
.
17.
Abrishambaf
,
O.
,
Faria
,
P.
,
Gomes
,
L.
,
Spínola
,
J.
,
Vale
,
Z.
, and
Corchado
,
J. M.
,
2017
, “
Implementation of a Real-Time Microgrid Simulation Platform Based on Centralized and Distributed Management
,”
Energies (Basel)
,
10
(
6
), p.
806
.10.3390/en10060806
18.
Banihabib
,
R.
,
Obrist
,
M. J.
,
Assadi
,
M.
, and
Jansohn
,
P.
,
2022
, “
Micro Gas Turbine Modelling and Adaptation for Condition Monitoring
,”
Global Power and Propulsion
, Chania, Greece, Sept. 12.
19.
Banihabib
,
R.
, and
Assadi
,
M.
,
2022
, “
The Role of Micro Gas Turbines in Energy Transition
,”
Energies (Basel)
,
15
(
21
), p.
8084
.10.3390/en15218084
20.
Rafiq
,
M. Y.
,
Bugmann
,
G.
, and
Easterbrook
,
D. J.
,
2001
, “
Neural Network Design for Engineering Applications
,”
Comput. Struct.
, 79(17), pp. 1541–1552.10.1016/S0045-7949(01)00039-6
21.
European Commission
,
2020
, “
Triangulum: The Three Point Project/Demonstrate. Disseminate. Replicate
,”
European Horizon 2020, European Commission
,
Brussels, Belgium
.10.3030/646578
22.
Standard Norge
,
2014
, “
Norwegian Standard 3031:2014 Calculation of Energy Performance of Buildings — Method and Data
,” Standard Norge, Oslo, NO.
23.
Banihabib
,
R.
, and
Assadi
,
M.
,
2022
, “
A Hydrogen-Fueled Micro Gas Turbine Unit for Carbon-Free Heat and Power Generation
,”
Sustainability
,
14
(
20
), p.
13305
.10.3390/su142013305
24.
Lotz
,
C.
,
Mohr
,
S.
, and
Schneider
,
K.
,
2021
, “
Fraunhofer ISE—Annual Report 2020/2021
,” Fraunhofer Institute for Solar Energy Systems ISE Communications, Freiburg, Germany, accessed Sept. 2022, https://www.ise.fraunhofer.de/content/dam/ise/en/documents/annual_reports/fraunhofer-ise-annual-report-2020-2021.pdf
25.
Shaikh
,
A. K.
,
Nazir
,
A.
,
Khan
,
I.
, and
Shah
,
A. S.
,
2022
, “
Short Term Energy Consumption Forecasting Using Neural Basis Expansion Analysis for Interpretable Time Series
,”
Sci. Rep.
,
12
(
1
), pp.
1
18
.10.1038/s41598-022-26499-y
26.
NVE-RME, 2021, “
RME - The Regulatory Authority for Energy
,” accessed June 2021, https://www.nve.no/reguleringsmyndigheten/
27.
Jin
,
S.
,
Wang
,
S.
, and
Fang
,
F.
,
2021
, “
Game Theoretical Analysis on Capacity Configuration for Microgrid Based on Multi-Agent System
,”
Int. J. Electr. Power Energy Syst.
,
125
, p.
106485
.10.1016/j.ijepes.2020.106485
28.
Virtanen
,
P.
,
Gommers
,
R.
,
Oliphant
,
T. E.
,
Haberland
,
M.
,
Reddy
,
T.
,
Cournapeau
,
D.
,
Burovski
,
E.
, et al.,
2020
, “
SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python
,”
Nat. Methods
,
17
(
3
), pp.
261
272
.10.1038/s41592-019-0686-2
You do not currently have access to this content.