Abstract

This work demonstrates the capability of an open-source autonomous computational fluid dynamics (CFD) metamodeling environment (OpenACME) for optimizing small-scale combustor designs. OpenACME couples several object-oriented programing open-source codes for CFD-assisted design using a decomposition-based many-objective evolutionary algorithm. The CFD is based on steady, incompressible, three-dimensional simulations with k–ω SST RANS and flamelet/progress variable combustion model. There are five unconstrained design variables based on combustor liner dilution hole diameters. The CFD results are compared with existing experimental data in terms of combustion efficiency as a function of severity parameter. The comparison demonstrates that the CFD methods capture combustion efficiency trends. Next, more than 500 combustor designs are evaluated with OpenACME. A Pareto Frontier is generated in terms of combustion efficiency, pattern factor, and total pressure losses. Pseudo-weights are used to select a nondominated Pareto Frontier design point for future fabrication and experimental testing. OpenACME is demonstrated to be a viable tool for small-scale combustor design optimization.

References

1.
Briones
,
A. M.
,
Erdmann
,
T. J.
, and
Rankin
,
B. A.
,
2022
, “
On-Design Component-Level Multiple-Objective Optimization of a Small-Scale Cavity-Stabilized Combustor
,”
ASME J. Eng. Gas Turbines Power
,
144
(
3
), p.
031016
.10.1115/1.4051966
2.
Briones
,
A. M.
, and
Rankin
,
B. A.
,
2022
, “
Development of an Open-Source Autonomous CFD Meta-Modeling Environment for Small-Scale Combustor Optimization—Part I
,”
ASME
Paper No. GT2022-78581. 10.1115/GT2022-78581
3.
Briones
,
A. M.
, and
Rankin
,
B. A.
,
2022
, “
Development of an Open-Source Autonomous CFD Meta-Modeling Environment for Small-Scale Combustor Optimization—Part II
,”
ASME
Paper No. GT2022-78586.10.1115/GT2022-78586
4.
Briones
,
A. M.
, and
Rankin
,
B. A.
,
2022
, “
Development of an Open-Source Autonomous Computational Fluid Dynamics Meta-Modeling Environment for Small-Scale Combustor Optimization
,”
ASME J. Eng. Gas Turbines Power
,
144
(
12
), p.
121003
.10.1115/1.4055367
5.
Sadatakhavi
,
S.
,
Tabejamaat
,
S.
,
EiddiAttarZade
,
M.
, and
Kankashvar
,
B.
,
2020
, “
Experimental and Numerical Study of Combustion Characteristics in a Liquid Fuel CAN Micro-Combustor
,”
Aerosp. Sci. Technol.
,
105
, p.
106023
.10.1016/j.ast.2020.106023
6.
Kankashvar
,
B.
,
Tabejamaat
,
S.
,
EidiAttarZade
,
M.
,
Sadatakhavi
,
S. M.
, and
Nozari
,
M.
,
2021
, “
Experimental Study of the Effect of the Spray Cone Angle on the Temperature Distribution in a Can Micro-Combustor
,”
Aerosp. Sci. Technol.
,
115
, p.
106799
.10.1016/j.ast.2021.106799
7.
Jin
,
Y.
,
He
,
X.
,
Jiang
,
B.
,
Wu
,
Z.
,
Ding
,
G.
, and
Zhu
,
Z.
,
2014
, “
Effect of Cavity-Injector/Radial-Strut Relative Position on Performance of a Trapped Vortex Combustor
,”
Aerosp. Sci. Technol.
,
32
(
1
), pp.
10
18
.10.1016/j.ast.2013.12.014
8.
Mangra
,
A. C.
,
2020
, “
Micro Gas Turbine Combustion Chamber CFD Modelling
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
916
, p.
012064
.10.1088/1757-899X/916/1/012064
9.
Mangra
,
A. C.
,
2020
, “
Design and Numerical Analysis of a Micro Gas Turbine Combustion Chamber
,”
Eng. Technol. Appl. Sci. Res.
,
10
(
6
), pp.
6422
6426
.10.48084/etasr.3835
10.
Kuo
,
C. H.
, and
Ronney
,
P. D.
,
2007
, “
Numerical Modeling of On-Adiabatic Heat-Recirculating Combustors
,”
Proc. Combust. Inst.
,
31
(
2
), pp.
3277
3284
.10.1016/j.proci.2006.08.082
11.
Kim
,
N. I.
,
Kato
,
S.
,
Kataoka
,
T.
,
Yokomori
,
T.
,
Maruyama
,
S.
,
Fujimori
,
T.
, and
Maruta
,
K.
,
2005
, “
Flame Stabilization and Emission of Small Swiss-Roll Combustors as Heaters
,”
Combust. Flame
,
141
(
3
), pp.
229
240
.10.1016/j.combustflame.2005.01.006
12.
Bohan
,
B. T.
, and
Polanka
,
M. D.
,
2019
, “
A New Spin in Small-Scale Combustor Geometry
,”
ASME J. Eng. Gas Turbines Power
,
141
(
1
), p.
011504
.10.1115/1.4040658
13.
Briones
,
A. M.
,
Caswell
,
A. W.
, and
Rankin
,
B. A.
,
2021
, “
Fully Coupled Turbojet Engine Computational Fluid Dynamics Simulations and Cycle Analyses Along the Equilibrium Running Line
,”
ASME J. Eng. Gas Turbines Power
,
143
(
6
), p.
061019
.10.1115/1.4049410
14.
Riegel
,
J.
,
Mayer
,
W.
, and
van Havre
,
Y.
,
2019
, “
FreeCAD Version 0.18
,” FreeCAD, accessed Oct. 13, 2023, http://www.freecadweb.org
15.
Weller
,
H. G.
,
Tabor
,
G.
,
Jasak
,
H.
, and
Fureby
,
C.
,
1998
, “
A Tensorial Approach to Computational Continuum Mechanics Using Object-Oriented Techniques
,”
Comput. Phys.
,
12
(
6
), pp.
620
631
.10.1063/1.168744
16.
OpenCFD, 2021,
OpenFOAM®—Official Home of the Open Source Computational Fluid Dynamics (CFD) Toolbox
,” OpenFOAM, OpenCFD, England, UK, accessed Oct. 13, 2023, www.openfoam.com
17.
Ahrens
,
J.
,
Geveci
,
B.
, and
Law
,
C.
,
2005
, “
ParaView: An End-User Tool for Large Data Visualization
,”
Visualization Handbook
,
Elsevier
, Butterworth-Heinemann, Oxford, UK, pp.
717
731
.https://www.researchgate.net/publication/247111133_ParaView_An_End-User_Tool_for_Large_Data_Visualization
18.
Ayachit
,
U.
,
2015
,
The ParaView Guide: A Parallel Visualization Application
,
Kitware
,
New York
.
19.
Li
,
K.
,
Chen
,
R.
,
Fu
,
G.
, and
Yao
,
X.
,
2019
, “
Two-Archive Evolutionary Algorithm for Constrained Multiobjective Optimization
,”
IEEE Trans. Evol. Comput.
,
23
(
2
), pp.
303
315
.10.1109/TEVC.2018.2855411
20.
Ma
,
Z.
, and
Wang
,
Y.
,
2019
, “
Evolutionary Constrained Multiobjective Optimization: Test Suite Construction and Performance Comparisons
,”
IEEE Trans. Evol. Comput.
,
23
(
6
), pp.
972
986
.10.1109/TEVC.2019.2896967
21.
Deb
,
K.
, and
Abouhawwash
,
M.
,
2016
, “
An Optimality Theory-Based Proximity Measure for Set-Based Multiobjective Optimization
,”
IEEE Trans. Evol. Comput.
,
20
(
4
), pp.
515
528
.10.1109/TEVC.2015.2483590
22.
Deb
,
K.
,
Pratap
,
A.
,
Agarwal
,
S.
, and
Meyarivan
,
T.
,
2002
, “
A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II
,”
IEEE Trans. Evol. Comput.
,
6
(
2
), pp.
182
197
.10.1109/4235.996017
23.
Price
,
K.
,
Storn
,
R. M.
, and
Lampinen
,
J. A.
,
2005
,
Differential Evolution: A Practical Approach to Global Optimization
(Natural Computing Series),
Springer-Verlag
,
Berlin, Germany
.
24.
Blank
,
J.
, and
Deb
,
K.
,
2020
, “
PyMOO: Multi-Objective Optimization in Python
,”
IEEE Access
,
8
, pp.
89497
89509
.10.1109/ACCESS.2020.2990567
25.
Briones
,
A. M.
,
Olding
,
R.
,
Sykes
,
J. P.
,
Rankin
,
B. A.
,
McDevitt
,
K.
, and
Heyne
,
J. S.
,
2018
, “
Combustion Modeling Software Development, Verification and Validation
,”
ASME
Paper No. POWER2018-7433.10.1115/POWER2018-7433
26.
Das
,
I.
, and
Dennis
,
J. E.
,
1998
, “
Normal-Boundary Intersection: A New Method for Generating the Pareto Surface in Nonlinear Multicriteria Optimization Problems
,”
SIAM J. Optim.
,
8
(
3
), pp.
631
657
.10.1137/S1052623496307510
27.
Hinze
,
J. O.
,
1975
,
Turbulence
,
McGraw-Hill Publishing
,
New York
.
28.
Xu
,
R.
,
Wang
,
K.
,
Banerjee
,
S.
,
Shao
,
J.
,
Parise
,
T.
,
Zhu
,
Y.
,
Wang
,
S.
, et al.,
2018
, “
A Physics-Based Approach to Modeling Real-Fuel Combustion Chemistry—II. Reaction Kinetic Models of Jet and Rocket Fuels
,”
Combust. Flame
,
193
, pp.
520
537
.10.1016/j.combustflame.2018.03.021
29.
Wang
,
H.
,
Xu
,
R.
,
Wang
,
K.
,
Bowman
,
C. T.
,
Davidson
,
D. F.
,
Hanson
,
R. K.
,
Brezinsky
,
K.
, and
Egolfopoulos
,
F. N.
,
2018
, “
A Physics-Based Approach to Modeling Real-Fuel Combustion Chemistry—I Evidence From Experiments, and Thermodynamic, Chemical Kinetics and Statistical Considerations
,”
Combust. Flame
,
193
, pp.
502
519
.10.1016/j.combustflame.2018.03.019
30.
Colket
,
M.
,
Heyne
,
J.
,
Rumizen
,
M.
,
Gupta
,
M.
,
Edwards
,
T.
,
Roquemore
,
W. M.
,
Andac
,
G.
, et al.,
2017
, “
Overview of the National Jet Fuels Combustion Program
,”
AIAA J.
,
55
(
4
), pp.
1087
1104
.10.2514/1.J055361
31.
van Leer
,
B.
,
1974
, “
Towards the Ultimate Conservative Difference Scheme. II. Monotonicity and Conservation Combined in a Second-Order Scheme
,”
J. Comput. Phys.
,
14
(
4
), pp.
361
370
.10.1016/0021-9991(74)90019-9
32.
van Doormaal
,
J. P.
, and
Raithby
,
G. D.
,
1984
, “
Enhancements of the SIMPLE Method for Predicting Incompressible Fluid Flows
,”
Numer. Heat Transfer
,
7
(
2
), pp.
147
163
.10.1080/01495728408961817
33.
Barrett
,
R.
,
Berry
,
M.
,
Chan
,
T. F.
,
Demmel
,
J.
,
Donato
,
J. M.
,
Dongarra
,
J.
,
Eijkhout
,
V.
,
Pozo
,
R.
,
Romine
,
C.
, and
van der Vorst
,
H.
,
1994
,
Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods
, 2nd ed.,
Siam
,
Philadelphia, PA
.
34.
van der Vorst
,
H. A.
,
1992
, “
Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems
,”
SIAM J. Sci. Stat. Comput.
,
13
(
2
), pp.
631
644
.10.1137/0913035
35.
Deb
,
K.
,
2001
,
Multi-Objective Optimization Using Evolutionary Algorithms
,
Wiley
,
New York
.
You do not currently have access to this content.