Abstract

Carbon dioxide emissions in gas turbine power generation can be reduced by adding an increasing amount of hydrogen to the existing natural gas-fueled combustion systems. To enable safe operation, more insight on how H2 addition affects turbulent flame speed and other important flame characteristics is needed. In this work, the investigation of hydrogen addition effects on certain flame properties has been carried out in a high-pressure axial-dump combustor at gas turbine relevant conditions. OH planar laser induced fluorescence (PLIF) was applied to retrieve flame front contours and turbulent flame speed. The results show that as the concentration of hydrogen in the fuel mixture increases, turbulent flame speed and flame characteristics change drastically. Two main regimes can be identified: From 0 to 50% vol. Hydrogen, the turbulent flame speed increases weakly in an almost linear fashion, while from 50% vol. to 100% vol. the trend sharply changes and the higher reactivity of hydrogen, combined with a lower Lewis number, cause thermal-diffusive instability and preferential diffusion effects to become increasingly strong, leading to very high burning rates. The presented results help to understand and to define the relevant modifications that are necessary to successfully operate gas turbine combustor systems with high H2 content fuels.

References

1.
Scipioni
,
A.
,
Manzardo
,
A.
, and
Ren
,
J.
,
2017
,
Hydrogen Economy: Supply Chain, Life Cycle Analysis and Energy Transition for Sustainability
, Elsevier Science, Amsterdam, The Netherlands.https://www.sciencedirect.com/book/9780128111321/hydrogen-economy
2.
Mcdonell
,
V.
,
2016
,
Lean Combustion in Gas Turbines
, Elsevier Science, Amsterdam, The Netherlands.10.1016/B978-0-12-804557-2.00005-5
3.
Huang
,
Y.
, and
Yang
,
V.
,
2009
, “
Dynamics and Stability of Lean-Premixed Swirl-Stabilized Combustion
,”
Prog. Energy Combust. Sci.
,
35
(
4
), pp.
293
364
.10.1016/j.pecs.2009.01.002
4.
Ebi
,
D.
,
Bombach
,
R.
, and
Jansohn
,
P.
,
2021
, “
Swirl Flame Boundary Layer Flashback at Elevated Pressure: Modes of Propagation and Effect of Hydrogen Addition
,”
Proc. Combust. Inst.
,
38
(
4
), pp.
6345
6353
.10.1016/j.proci.2020.06.305
5.
Shepherd
,
I. G.
, and
Cheng
,
R. K.
,
2001
, “
The Burning Rate of Premixed Flames in Moderate and Intense Turbulence
,”
Combust. Flame
,
127
(
3
), pp.
2066
2075
.10.1016/S0010-2180(01)00309-1
6.
Boschek
,
E.
,
Griebel
,
P.
, and
Jansohn
,
P.
, “
Fuel Variability Effects on Turbulent, Lean Premixed Flames at High Pressures
,”
ASME
Paper No. GT2007-27496.10.1115/GT2007-27496
7.
Fairweather
,
M.
,
Ormsby
,
M.
,
Sheppard
,
C.
, and
Woolley
,
R.
,
2009
, “
Turbulent Burning Rates of Methane and Methane–Hydrogen Mixtures
,”
Combust. Flame
,
156
(
4
), pp.
780
790
.10.1016/j.combustflame.2009.02.001
8.
Shy
,
S.
,
Chen
,
Y.
,
Yang
,
C.
,
Liu
,
C.
, and
Huang
,
C.
,
2008
, “
Effects of H2 or CO2 Addition, Equivalence Ratio, and Turbulent Straining on Turbulent Burning Velocities for Lean Premixed Methane Combustion
,”
Combust. Flame
,
153
(
4
), pp.
510
524
.10.1016/j.combustflame.2008.03.014
9.
Ichikawa
,
Y.
,
Otawara
,
Y.
,
Kobayashi
,
H.
,
Ogami
,
Y.
,
Kudo
,
T.
,
Okuyama
,
M.
, and
Kadowaki
,
S.
,
2011
, “
Flame Structure and Radiation Characteristics of CO/H2/CO2/Air Turbulent Premixed Flames at High Pressure
,”
Proc. Combust. Inst.
,
33
(
1
), pp.
1543
1550
.10.1016/j.proci.2010.05.068
10.
Kobayashi
,
H.
,
Otawara
,
Y.
,
Wang
,
J.
,
Matsuno
,
F.
,
Ogami
,
Y.
,
Okuyama
,
M.
,
Kudo
,
T.
, and
Kadowaki
,
S.
,
2013
, “
Turbulent Premixed Flame Characteristics of a CO/H2/O2 Mixture Highly Diluted With CO2 in a High-Pressure Environment
,”
Proc. Combust. Inst.
,
34
(
1
), pp.
1437
1445
.10.1016/j.proci.2012.05.048
11.
Kobayashi
,
H.
,
Tamura
,
T.
,
Maruta
,
K.
,
Niioka
,
T.
, and
Williams
,
F. A.
,
1996
, “
Burning Velocity of Turbulent Premixed Flames in a High-Pressure Environment
,”
Symp. (Int.) Combust.
,
26
(
1
), pp.
389
396
.10.1016/S0082-0784(96)80240-2
12.
Law
,
C. K.
,
2006
,
Combustion Physics
,
Cambridge University Press, Cambridge, UK.
10.1017/CBO9780511754517
13.
Mandilas
,
C.
,
Ormsby
,
M.
,
Sheppard
,
C.
, and
Woolley
,
R.
,
2007
, “
Effects of Hydrogen Addition on Laminar and Turbulent Premixed Methane and Iso-Octane–Air Flames
,”
Proc. Combust. Inst.
,
31
(
1
), pp.
1443
1450
.10.1016/j.proci.2006.07.157
14.
Halter
,
F.
,
Chauveau
,
C.
, and
Gökalp
,
I.
,
2007
, “
Characterization of the Effects of Hydrogen Addition in Premixed Methane/Air Flames
,”
Int. J. Hydrogen Energy
,
32
(
13
), pp.
2585
2592
.10.1016/j.ijhydene.2006.11.033
15.
Cohé
,
C.
,
Halter
,
F.
,
Chauveau
,
C.
,
Gökalp
,
I.
, and
Gülder
,
Ö. L.
,
2007
, “
Fractal Characterisation of High-Pressure and Hydrogen-Enriched CH4–Air Turbulent Premixed Flames
,”
Proc. Combust. Inst.
,
31
(
1
), pp.
1345
1352
.10.1016/j.proci.2006.07.181
16.
Peters
,
N.
,
1999
, “
The Turbulent Burning Velocity for Large-Scale and Small-Scale Turbulence
,”
J. Fluid Mech.
,
384
, pp.
107
132
.10.1017/S0022112098004212
17.
Lin
,
Y.-C.
,
Daniele
,
S.
,
Jansohn
,
P.
, and
Boulouchos
,
K.
, “
Combustion Characteristics and NOx Emission of Hydrogen-Rich Fuel Gases at Gas Turbine Relevant Conditions
,”
ASME
Paper No. GT2012-69080.10.1115/GT2012-69080
18.
Bell
,
J. B.
,
Cheng
,
R. K.
,
Day
,
M. S.
, and
Shepherd
,
I. G.
,
2007
, “
Numerical Simulation of Lewis Number Effects on Lean Premixed Turbulent Flames
,”
Proc. Combust. Inst.
,
31
(
1
), pp.
1309
1317
.10.1016/j.proci.2006.07.216
19.
Peters
,
N.
,
2000
,
Turbulent Combustion
,
Cambridge Monographs on Mechanics, Cambridge University Press, Cambridge, UK.
10.1017/CBO9780511612701
20.
Canny
,
J.
,
1986
, “
A Computational Approach to Edge Detection
,”
IEEE Trans. Pattern Analysis Machine Intelligence
,
PAMI-8
(
6
), pp.
679
698
.10.1109/TPAMI.1986.4767851
21.
Griebel
,
P.
,
Siewert
,
P.
, and
Jansohn
,
P.
,
2007
, “
Flame Characteristics of Turbulent Lean Premixed Methane/Air Flames at High Pressure: Turbulent Flame Speed and Flame Brush Thickness
,”
Proc. Combust. Inst.
,
31
(
2
), pp.
3083
3090
.10.1016/j.proci.2006.07.042
22.
Siewert
,
P.
,
2006
, “
Flame Front Characteristics of Turbulent Lean Premixed Methane/Air Flames at High-Pressure
,”
Doctoral thesis
,
Eidgenössische Technische Hochschule ETH Zürich, Zürich, Switzerland.
10.3929/ethz-a-005205731
23.
Daniele
,
S.
,
Mantzaras
,
J.
,
Jansohn
,
P.
,
Denisov
,
A.
, and
Boulouchos
,
K.
,
2013
, “
Flame Front/Turbulence Interaction for Syngas Fuels in the Thin Reaction Zones Regime: Turbulent and Stretched Laminar Flame Speeds at Elevated Pressures and Temperatures
,”
J. Fluid Mech.
,
724
, pp.
36
68
.10.1017/jfm.2013.141
24.
Chiu
,
C.-W.
,
Dong
,
Y.-C.
, and
Shy
,
S. S.
,
2012
, “
High-Pressure Hydrogen/Carbon Monoxide Syngas Turbulent Burning Velocities Measured at Constant Turbulent Reynolds Numbers
,”
Int. J. Hydrogen Energy
,
37
(
14
), pp.
10935
10946
.10.1016/j.ijhydene.2012.04.023
25.
Soika
,
A.
,
Dinkelacker
,
F.
, and
Leipertz
,
A.
,
2003
, “
Pressure Influence on the Flame Front Curvature of Turbulent Premixed Flames: Comparison Between Experiment and Theory
,”
Combust. Flame
,
132
(
3
), pp.
451
462
.10.1016/S0010-2180(02)00490-X
26.
Daniele
,
S.
,
Jansohn
,
P.
,
Mantzaras
,
J.
, and
Boulouchos
,
K.
,
2011
, “
Turbulent Flame Speed for Syngas at Gas Turbine Relevant Conditions
,”
Proc. Combust. Inst.
,
33
(
2
), pp.
2937
2944
.10.1016/j.proci.2010.05.057
27.
Goodwin
,
D. G.
,
Moffat
,
H. K.
,
Schoegl
,
I.
,
Speth
,
R. L.
, and
Weber
,
B. W.
,
2023
,
Cantera: An Object-Oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes
, Version 3.0.0.https://zenodo.org/records/6387882
28.
Metcalfe
,
W. K.
,
Burke
,
S. M.
,
Ahmed
,
S. S.
, and
Curran
,
H. J.
,
2013
, “
A Hierarchical and Comparative Kinetic Modeling Study of C1− C2 Hydrocarbon and Oxygenated Fuels
,”
Int. J. Chem. Kinetics
,
45
(
10
), pp.
638
675
.10.1002/kin.20802
29.
Donohoe
,
N.
,
Heufer
,
A.
,
Metcalfe
,
W. K.
,
Curran
,
H. J.
,
Davis
,
M. L.
,
Mathieu
,
O.
,
Plichta
,
D.
, et al.,
2014
, “
Ignition Delay Times, Laminar Flame Speeds, and Mechanism Validation for Natural Gas/Hydrogen Blends at Elevated Pressures
,”
Combust. Flame
,
161
(
6
), pp.
1432
1443
.10.1016/j.combustflame.2013.12.005
30.
Griebel
,
P.
,
Schären
,
R.
,
Siewert
,
P.
,
Bombach
,
R.
,
Inauen
,
A.
, and
Kreutner
,
W.
, “
Flow Field and Structure of Turbulent High-Pressure Premixed Methane/Air Flames
,”
ASME
Paper No. GT2003-38398.10.1115/GT2003-38398
31.
Hu
,
E.
,
Li
,
X.
,
Meng
,
X.
,
Chen
,
Y.
,
Cheng
,
Y.
,
Xie
,
Y.
, and
Huang
,
Z.
,
2015
, “
Laminar Flame Speeds and Ignition Delay Times of Methane–Air Mixtures at Elevated Temperatures and Pressures
,”
Fuel
,
158
, pp.
1
10
.10.1016/j.fuel.2015.05.010
32.
Hu
,
E.
,
Huang
,
Z.
,
He
,
J.
, and
Miao
,
H.
,
2009
, “
Experimental and Numerical Study on Laminar Burning Velocities and Flame Instabilities of Hydrogen–Air Mixtures at Elevated Pressures and Temperatures
,”
Int. J. Hydrogen Energy
,
34
(
20
), pp.
8741
8755
.10.1016/j.ijhydene.2009.08.044
33.
Marshall
,
A.
,
Lundrigan
,
J.
,
Venkateswaran
,
P.
,
Seitzman
,
J.
, and
Lieuwen
,
T.
,
2015
, “
Fuel Effects on Leading Point Curvature Statistics of High Hydrogen Content Fuels
,”
Proc. Combust. Inst.
,
35
(
2
), pp.
1417
1424
.10.1016/j.proci.2014.07.034
34.
Rieth
,
M.
,
Gruber
,
A.
, and
Chen
,
J. H.
,
2023
, “
The Effect of Pressure on Lean Premixed Hydrogen-Air Flames
,”
Combust. Flame
,
250
, p.
112514
.10.1016/j.combustflame.2022.112514
35.
Aspden
,
A.
,
Day
,
M.
, and
Bell
,
J.
,
2015
, “
Turbulence-Chemistry Interaction in Lean Premixed Hydrogen Combustion
,”
Proc. Combust. Inst.
,
35
(
2
), pp.
1321
1329
.10.1016/j.proci.2014.08.012
36.
Berger
,
L.
,
Attili
,
A.
, and
Pitsch
,
H.
,
2022
, “
Intrinsic Instabilities in Premixed Hydrogen Flames: Parametric Variation of Pressure, Equivalence Ratio, and Temperature. Part 2–Non‐Linear Regime and Flame Speed Enhancement
,”
Combust. Flame
,
240
, p.
111936
.10.1016/j.combustflame.2021.111936
37.
Vreman
,
A.
,
Van Oijen
,
J.
,
De Goey
,
L.
, and
Bastiaans
,
R.
,
2009
, “
Direct Numerical Simulation of Hydrogen Addition in Turbulent Premixed Bunsen Flames Using Flamelet-Generated Manifold Reduction
,”
Int. J. Hydrogen Energy
,
34
(
6
), pp.
2778
2788
.10.1016/j.ijhydene.2009.01.075
38.
Song
,
W.
,
Hernández-Pérez
,
F. E.
, and
Im
,
H. G.
,
2022
, “
Diffusive Effects of Hydrogen on Pressurized Lean Turbulent Hydrogen-Air Premixed Flames
,”
Combust. Flame
,
246
, p.
112423
.10.1016/j.combustflame.2022.112423
You do not currently have access to this content.