Abstract

Starved lubrication occurs intentionally or unconsciously in many journal bearing applications. However, the determination of its concrete distribution in a journal bearing is rather complex as the different lube oil feed grooves interact with each other due to their connection by the lubricant flow along the pad surfaces and the periodic geometric property of the entire bearing. A robust numerical procedure to determine the lube oil distribution between the different feed grooves in a starved lubricated fixed-pad journal bearing is presented as an extension to Elrod's cavitation algorithm. The enhanced algorithm partly integrates flow rate boundary conditions into the linear system of equations for the solution of Reynolds equation and the transport equation. A strategy to couple these flow rate boundary conditions with the iterative procedure to determine the binary cavitation index is proposed. In particular, the algorithm enables an appropriate modeling of lube oil grooves with locked oil supply including the consideration of groove-specific dissipation or design features like bleed notches. The novel algorithm is implemented as a submodule of a thermo-elasto-hydrodynamic bearing code and validated with test data for a high-speed two-lobe bearing with embedded arc. Furthermore, a comprehensive parametric study provides an insight on the robustness of the implemented numeric procedure. Results, current limitations, and possible extensions to the algorithm are discussed.

References

1.
Brito
,
F. P.
,
Miranda
,
A. S.
,
Claro
,
J. C. P.
,
Teixeira
,
J. C.
,
Costa
,
L.
, and
Fillon
,
M.
,
2014
, “
Thermohydrodynamic Modelling of Journal Bearings Under Varying Load Angle and Negative Groove Flow Rate
,”
Proc. Inst. Mech. Eng. J J. Eng. Tribol.
,
228
(
9
), pp.
955
973
.10.1177/1350650114526388
2.
Cunha
,
B. Z.
, and
Daniel
,
G. B.
,
2022
, “
Effects of Bearing Lubrication Conditions on Rotor Dynamic Behavior
,”
Proc. Inst. Mech. Eng. J J. Eng. Tribol.
,
236
(
3
), pp.
563
580
.10.1177/13506501211010563
3.
Hagemann
,
T.
,
Vetter
,
D.
,
Wettmarshausen
,
S.
,
Stottrop
,
M.
,
Engels
,
A.
,
Weißbacher
,
C.
,
Bender
,
B.
, and
Schwarze
,
H.
,
2022
, “
A Design for High-Speed Journal Bearings With Reduced Pad Size and Improved Efficiency
,”
Lubricants
,
10
(
11
), p.
313
.10.3390/lubricants10110313
4.
Brito
,
F. P.
,
Miranda
,
A. S.
,
Bouyer
,
J.
, and
Fillon
,
M.
,
2007
, “
Experimental Investigation of the Influence of Supply Temperature and Supply Pressure on the Performance of a Two-Axial Groove Hydrodynamic Journal Bearing
,”
ASME J. Tribol.
,
129
(
1
), pp.
98
105
.10.1115/1.2401206
5.
Tanaka
,
M.
,
2000
, “
Journal Bearing Performance Under Starved Lubrication
,”
Tribol. Int.
,
33
(
3–4
), pp.
259
264
.10.1016/S0301-679X(00)00040-2
6.
Vijayaraghavan
,
D.
,
Keith
,
T. G.
Jr.
, and
Brewe
,
D. E.
,
1996
, “
Effect of Lubricant Supply Starvation on the Thermohydrodynamic Performance of a Journal Bearing
,”
Tribol. Trans.
,
39
(
3
), pp.
645
653
.10.1080/10402009608983578
7.
Vincent
,
B.
,
Maspeyrot
,
P.
, and
Frěne
,
J.
,
1995
, “
Starvation and Cavitation Effects in Finite Grooved Journal Bearing
,”
Tribol. Ser.
,
30
, pp.
455
464
.10.1016/S0167-8922(08)70651-5
8.
Hashimoto
,
H.
, and
Ochiai
,
M.
,
2009
, “
Experimental Study on the Stabilization of Small-Bore Journal Bearings by Controlling Starved Lubrication and Bearing Orientation Angle
,”
ASME J. Tribol.
,
131
(
1
), p.
011705
.10.1115/1.2991128
9.
Hashimoto
,
H.
, and
Ochiai
,
M.
,
2010
, “
Stabilization Method for Small-Bore Journal Bearings Utilizing Starved Lubrication
,”
ASME J. Tribol.
,
132
(
1
), p.
011703
.10.1115/1.4000269
10.
San Andres
,
L.
, and
Alcantar
,
A.
,
2022
, “
Effect of a Reduced Oil Flow Rate on the Static and Dynamic Performance of a Tilting Pad Journal Bearing Running in Both the Flooded and Evacuated Conditions
,”
ASME J. Eng. Gas Turbines Power
,
145
(
6
), p.
061012
.10.1115/1.4056535
11.
Hagemann
,
T.
,
Zemella
,
P.
,
Pfau
,
B.
, and
Schwarze
,
H.
,
2020
, “
Experimental and Theoretical Investigations on Transition of Lubrication Conditions for a Five-Pad Tilting-Pad Journal Bearing With Eccentric Pivot Up to Highest Surface Speeds
,”
Tribol. Int.
,
142
, p.
106008
.10.1016/j.triboint.2019.106008
12.
Yang
,
S. H.
,
Kim
,
C.
, and
Lee
,
Y. B.
,
2006
, “
Experimental Study on the Characteristics of Pad Fluttering in a Tilting Pad Journal Bearing
,”
Tribol. Int.
,
39
(
7
), pp.
686
694
.10.1016/j.triboint.2005.05.006
13.
DeCamillo
,
S. M.
,
He
,
M.
, and
Cloud
,
C. H.
,
2008
, “
Journal Bearing Vibration and SSV Hash
,”
Proceedings of the 37th Turbomachinery Symposium
,
Texas A&M University. Turbomachinery Laboratories
,
Houston, TX
, Sept. 7–11, pp.
11
23
.https://www.kingsbury.com/pdf/journal-bearing-vibration-and-ssv-hash.pdf
14.
San Andrés
,
L.
,
Koo
,
B.
, and
Hemmi
,
M.
,
2018
, “
A Flow Starvation Model for Tilting Pad Journal Bearings and Evaluation of Frequency Response Functions: A Contribution Toward Understanding the Onset of Low Frequency Shaft Motions
,”
ASME J. Eng. Gas Turbines Power
,
140
(
5
), p.
052506
.10.1115/1.4038043
15.
Zemella
,
P.
,
Hagemann
,
T.
,
Pfau
,
B.
, and
Schwarze
,
H.
,
2021
, “
Identification of Dynamic Coefficients of a Five-Pad Tilting-Pad Journal Bearing Up to Highest Surface Speeds
,”
ASME J. Eng. Gas Turbines Power
,
143
(
8
), p.
081013
.10.1115/1.4049664
16.
Braun
,
M. J.
, and
Hannon
,
W. M.
,
2010
, “
Cavitation Formation and Modelling for Fluid Film Bearings: A Review
,”
Proc. Inst. Mech. Eng. J J. Eng. Tribol.
,
224
(
9
), pp.
839
863
.10.1243/13506501JET772
17.
Elrod
,
H. G.
,
1981
, “
A Cavitation Algorithm
,”
ASME J. Lubr. Technol.
,
103
(
3
), pp.
350
354
.10.1115/1.3251669
18.
Hagemann
,
T.
, and
Schwarze
,
H.
,
2019
, “
A Model for Oil Flow and Fluid Temperature Inlet Mixing in Hydrodynamic Journal Bearings
,”
ASME J. Tribol.
,
141
(
2
), p.
021702
.10.1115/1.4041211
19.
Hagemann
,
T.
,
Kukla
,
S.
, and
Schwarze
,
H.
,
2013
, “
Measurement and Prediction of the Static Operating Conditions of a Large Turbine Tilting-Pad Bearing Under High Circumferential Speeds and Heavy Loads
,”
ASME
Paper No. GT2013-95004.10.1115/GT2013-95004
20.
Dowson
,
D.
,
1962
, “
A Generalized Reynolds Equation for Fluid Film Lubrication
,”
Int. J. Mech. Sci.
,
4
(
2
), pp.
159
170
.10.1016/S0020-7403(62)80038-1
21.
Constantinescu
,
V. N.
,
1973
, “
Basic Relationships in Turbulent Lubrication and Their Extension to Include Thermal Effects
,”
ASME J. Lubr. Technol.
,
95
(
2
), pp.
147
154
.10.1115/1.3451755
22.
Patankar
,
S. V.
,
2018
,
Numerical Heat Transfer and Fluid Flow
,
CRC Press
,
New York
.
23.
Mittwollen
,
N.
, and
Glienicke
,
J.
,
1990
, “
Operating Conditions of Multi-Lobe Journal Bearings Under High Thermal Loads
,”
ASME J. Tribol.
,
112
(
2
), pp.
330
338
.10.1115/1.2920261
24.
Mittwollen
,
N.
,
1990
,
Operating Behavior of Journal Bearings at High Circumferential Speeds and High Thermal Loads – Theoretical Investigations
,
VDI-Verlag
,
Dusseldorf, Germany
, VDI Series 1, 187(in German).
25.
Bou-Said
,
B.
, and
Chaomleffel
,
J. P.
,
1989
, “
Hybrid Journal Bearings: Theoretical and Experimental Results
,”
ASME J. Tribol.
,
111
(
2
), pp.
265
269
.10.1115/1.3261903
26.
Schüler
,
D.
,
1994
, “
Comparative Experimental and Theoretical Studies for an Elliptical Bearing With Embedded Arc
,”
RU Bochum
,
Bochum, Germany
(in German), Report.
27.
Hopf
,
G.
, and
Schüler
,
D.
,
1989
, “
Investigations on Large Turbine Bearings Working Under Transitional Conditions Between Laminar and Turbulent Flow
,”
ASME J. Tribol.
,
111
(
4
), pp.
628
634
.10.1115/1.3261987
28.
Stottrop
,
M.
,
Buchhorn
,
N.
, and
Bender
,
B.
,
2022
, “
Experimental Investigation of a Large Tilting-Pad Journal Bearing—Comparison of a Flooded and Non-Flooded Design
,”
Lubricants
,
10
(
5
), p.
83
.10.3390/lubricants10050083
You do not currently have access to this content.