Abstract

The understanding of processes that govern soot production in aero-engines is fundamental for the design of new combustion systems with low environmental impact. Many combustors, more specifically those used in aero-engines, feature rich flame regions typically exploited in the so-called rich-quench-lean (RQL) technology. Thus, it is important to consider rich turbulent flames operating in the premixed mode. To this purpose, a model scale swirled combustor, called EM2Soot, was designed at the EM2C laboratory to analyze soot production under perfectly premixed rich conditions. In this work, the effect of the equivalence ratio on soot production in this burner is experimentally characterized and numerically simulated. Measurements of Planar Laser Induced Fluorescence of polycyclic aromatic hydrocarbons (PLIF-PAH) were performed to examine soot precursors presence, whereas soot volume fraction is measured with planar laser-induced incandescence (LII). Large Eddy Simulations (LES) are carried out using models already established in literature. By considering a range of equivalence ratios, the soot volume fraction from the experiments was found to reach a maximum near 1.8, whereas a lower level of soot volume fraction was measured for lower and for higher equivalence ratios. The large eddy simulations are found to be in qualitative agreement with experimental data in terms of polycyclic aromatic hydrocarbons (PAHs) and soot location. The soot volume fractions fv are notably overestimated with respect to the LII measurements. However, the numerical results correctly retrieve a reduction of soot production for the highest considered equivalence ratio value and can be used to explain the experimental behavior.

References

1.
Statistical Review of World Energy
,
2020
, “
Statistical Review of World Energy 2020
,” accessed Nov. 9, 2023, https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2020-full-report.pdf
2.
Ballester
,
F.
,
Medina
,
S.
,
Boldo
,
E.
,
Goodman
,
P.
,
Neuberger
,
M.
,
Iñiguez
,
C.
, and
Künzli
,
N.
, and
on behalf of the Apheis network
,
2008
, “
Reducing Ambient Levels of Fine Particulates Could Substantially Improve Health: A Mortality Impact Assessment for 26 European Cities
,”
J. Epidemiol. Community Health
,
62
(
2
), pp.
98
105
.10.1136/jech.2007.059857
3.
Boldo
,
E.
,
Medina
,
S.
,
Le Tertre
,
A.
,
Hurley
,
F.
,
Mücke
,
H. G.
,
Ballester
,
F.
,
Aguilera
,
I.
,
Eilstein
,
D.
, and
Daniel Eilstein on behalf of the Apheis group
,
2006
, “
Apheis: Health Impact Assessment of Long-Term Exposure to PM2.5 in 23 European Cities
,”
Eur. J. Epidemiol.
,
21
(
6
), pp.
449
458
.10.1007/s10654-006-9014-0
4.
Lewtas
,
J.
,
2007
, “
Air Pollution Combustion Emissions: Characterization of Causative Agents and Mechanisms Associated With Cancer, Reproductive, and Cardiovascular Effects
,”
Mutat. Res./Rev. Mutat. Res.
,
636
(
1–3
), pp.
95
133
.10.1016/j.mrrev.2007.08.003
5.
Sekiguchi
,
M.
,
Nakajima
,
T.
,
Suzuki
,
K.
,
Kawamoto
,
K.
,
Higurashi
,
A.
,
Rosenfeld
,
D.
,
Sano
,
I.
, and
Mukai
,
S.
,
2003
, “
A Study of the Direct and Indirect Effects of Aerosols Using Global Satellite Data Sets of Aerosol and Cloud Parameters
,”
J. Geophys. Res.
,
108
(
D22
), pp.
148
227
.10.1029/2002JD003359
6.
Franzelli
,
B.
,
Tardelli
,
L.
,
Stöhr
,
M.
,
Geigle
,
K. P.
, and
Domingo
,
P.
,
2023
, “
Assessment of LES of Intermittent Soot Production in an Aero-Engine Model Combustor Using High-Speed Measurements
,”
Proc. Combust. Inst.
,
39
(
4
), pp.
4821
4829
.10.1016/j.proci.2022.09.060
7.
Tardelli
,
L.
,
Darabiha
,
N.
,
Veynante
,
D.
, and
Franzelli
,
B.
,
2021
, “
Validating Soot Models in LES of Turbulent Flames: The Contribution of Soot Subgrid Intermittency Model to the Prediction of Soot Production in an Aero-Engine Model Combustor
,”
ASME
Paper No. GT2021-60296.10.1115/GT2021-60296
8.
Grader
,
M.
,
Yin
,
Z.
,
Geigle
,
K. P.
, and
Gerlinger
,
P.
,
2021
, “
Influence of Flow Field Dynamics on Soot Evolution in an Aero-Engine Model Combustor
,”
Proc. Combust. Inst.
,
38
(
4
), pp.
6421
6429
.10.1016/j.proci.2020.05.019
9.
Chong
,
S. T.
,
Hassanaly
,
M.
,
Koo
,
H.
,
Mueller
,
M. E.
,
Raman
,
V.
, and
Geigle
,
K. P.
,
2018
, “
Large Eddy Simulation of Pressure and Dilution-Jet Effects on Soot Formation in a Model Aircraft Swirl Combustor
,”
Combust. Flame
,
192
, pp.
452
472
.10.1016/j.combustflame.2018.02.021
10.
Gallen
,
L.
,
Felden
,
A.
,
Riber
,
E.
, and
Cuenot
,
B.
,
2019
, “
Lagrangian Tracking of Soot Particles in LES of Gas Turbines
,”
Proc. Combust. Inst.
,
37
(
4
), pp.
5429
5436
.10.1016/j.proci.2018.06.013
11.
Geigle
,
K. P.
,
Hadef
,
R.
, and
Meier
,
W.
,
2014
, “
Soot Formation and Flame Characterization of an Aero-Engine Model Combustor Burning Ethylene at Elevated Pressure
,”
ASME J. Eng. Gas Turbines Power
,
136
(
2
), p.
021505
.10.1115/1.4025374
12.
Geigle
,
K. P.
,
Köhler
,
M.
,
O'Loughlin
,
W.
, and
Meier
,
W.
,
2015
, “
Investigation of Soot Formation in Pressurized Swirl Flames by Laser Measurements of Temperature, Flame Structures and Soot Concentrations
,”
Proc. Combust. Inst.
,
35
(
3
), pp.
3373
3380
.10.1016/j.proci.2014.05.135
13.
Roussillo
,
M.
,
Scouflaire
,
P.
,
Darabiha
,
N.
,
Candel
,
S.
, and
Franzelli
,
B.
,
2018
, “
A New Experimental Database for the Investigation of Soot in a Model Scale Swirled Combustor Under Perfectly Premixed Rich Conditions
,”
ASME
Paper No. GT2018-76205.10.1115/GT2018-76205
14.
Roussillo
,
M.
,
Scouflaire
,
P.
,
Candel
,
S.
, and
Franzelli
,
B.
,
2019
, “
Experimental Investigation of Soot Production in a Confined Swirled Flame Operating Under Perfectly Premixed Rich Conditions
,”
Proc. Combust. Inst.
,
37
(
1
), pp.
893
901
.10.1016/j.proci.2018.06.110
15.
Bouvier
,
M.
,
Cabot
,
G.
,
Yon
,
J.
, and
Grisch
,
F.
,
2021
, “
On the Use of PIV, LII, PAH-PLIF and OH-PLIF for the Study of Soot Formation and Flame Structure in a Swirl Stratified Premixed Ethylene/Air Flame
,”
Proc. Combust. Inst.
,
38
(
1
), pp.
1851
1858
.10.1016/j.proci.2020.10.002
16.
El Helou
,
I.
,
Skiba
,
A. W.
, and
Mastorakos
,
E.
,
2021
, “
Experimental Investigation of Soot Production and Oxidation in a Lab-Scale Rich-Quench-Lean (RQL) Burner
,”
Flow, Turbul. Combust.
,
106
(
4
), pp.
1019
1041
.10.1007/s10494-020-00113-5
17.
Mulla
,
I. A.
, and
Renou
,
B.
,
2019
, “
Simultaneous Imaging of Soot Volume Fraction, PAH, and OH in a Turbulent n-Heptane Spray Flame
,”
Combust. Flame
,
209
, pp.
452
466
.10.1016/j.combustflame.2019.08.012
18.
Felden
,
A.
,
Riber
,
E.
, and
Cuenot
,
B.
,
2018
, “
Impact of Direct Integration of Analytically Reduced Chemistry in LES of a Sooting Swirled Non-Premixed Combustor
,”
Combust. Flame
,
191
, pp.
270
286
.10.1016/j.combustflame.2018.01.005
19.
Poinsot
,
T.
, and
Veynante
,
D.
,
2005
,
Theoretical and Numerical Combustion
, 2nd ed.,
Edwards
,
Philadelphia, PA
.
20.
Roussillo
,
M.
,
2019
, “
Development of Optical Diagnostics for Soot Particles Measurements and Application to Confined Swirling Premixed Sooting Flames Under Rich Conditions
,”
Ph.D. thesis
,
Université Paris-Saclay
,
Gif-sur-Yvette, France
.https://theses.hal.science/tel-02317701/
21.
Desgroux
,
P.
,
Mercier
,
X.
, and
Thomson
,
K. A.
,
2013
, “
Study of the Formation of Soot and Its Precursors in Flames Using Optical Diagnostics
,”
Proc. Combust. Inst.
,
34
(
1
), pp.
1713
1738
.10.1016/j.proci.2012.09.004
22.
Melton
,
L. A.
,
1984
, “
Soot Diagnostics Based on Laser Heating
,”
Appl. Opt.
,
23
(
13
), pp.
2201
2208
.10.1364/AO.23.002201
23.
Legros
,
G.
,
Wang
,
Q.
,
Bonnety
,
J.
,
Kashif
,
M.
,
Morin
,
C.
,
Consalvi
,
J. L.
, and
Liu
,
F.
,
2015
, “
Simultaneous Soot Temperature and Volume Fraction Measurements in Axis-Symmetric Flames by a Two-Dimensional Modulated Absorption/Emission Technique
,”
Combust. Flame
,
162
(
6
), pp.
2705
2719
.10.1016/j.combustflame.2015.04.006
24.
Franzelli
,
B.
,
Roussillo
,
M.
,
Scouflaire
,
P.
,
Bonnety
,
J.
,
Jalain
,
R.
,
Dormieux
,
T.
,
Candel
,
S.
, and
Legros
,
G.
,
2019
, “
Multi-Diagnostic Soot Measurements in a Laminar Diffusion Flame to Assess the ISF Database Consistency
,”
Proc. Combust. Inst.
,
37
(
2
), pp.
1355
1363
.10.1016/j.proci.2018.05.062
25.
Shaddix
,
C.
, and
Williams
,
T.
,
2021
, “
Analysis of Laser Focusing Effect on Quantification of LII Images
,”
Proc. Combust. Inst.
,
38
(
1
), pp.
1729
1736
.10.1016/j.proci.2020.07.015
26.
Bejaoui
,
S.
,
Mercier
,
X.
,
Desgroux
,
P.
, and
Therssen
,
E.
,
2014
, “
Laser Induced Fluorescence Spectroscopy of Aromatic Species Produced in Atmospheric Sooting Flames Using UV and Visible Excitation Wavelengths
,”
Combust. Flame
,
161
(
10
), pp.
2479
2491
.10.1016/j.combustflame.2014.03.014
27.
Shaddix
,
C. R.
, and
Smyth
,
K. C.
,
1996
, “
Laser-Induced Incandescence Measurements of Soot Production in Steady and Flickering Methane, Propane, and Ethylene Diffusion Flames
,”
Combust. Flame
,
107
(
4
), pp.
418
452
.10.1016/S0010-2180(96)00107-1
28.
Gallen
,
L.
,
2020
, “
Prediction of Soot Particles in Gas Turbine Combustors Using Large Eddy Simulations
,”
Ph.D. thesis
,
Université de Toulouse
,
Toulouse, France
.https://www.theses.fr/2020INPT0058
29.
Frenklach
,
M.
, and
Wang
,
H.
,
1991
, “
Detailed Modeling of Soot Particle Nucleation and Growth
,”
Symp. (Int.) Combust.
,
23
(
1
), pp.
1559
1566
.10.1016/S0082-0784(06)80426-1
30.
Thomson
,
M.
, and
Mitra
,
T.
,
2018
, “
A Radical Approach to Soot Formation
,”
Science
,
361
(
6406
), pp.
978
979
.10.1126/science.aau5941
31.
Franzelli
,
B.
,
Vié
,
A.
, and
Darabiha
,
N.
,
2019
, “
A Three-Equation Model for the Prediction of Soot Emissions in LES of Gas Turbines
,”
Proc. Combust. Inst.
,
37
(
4
), pp.
5411
5419
.10.1016/j.proci.2018.05.061
32.
Smagorinsky
,
J.
,
1963
, “
General Circulation Experiments With the Primitive Equations
,”
Mon. Weather Rev.
,
91
(
3
), pp.
99
164
.10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
33.
Franzelli
,
B.
,
Scouflaire
,
P.
, and
Candel
,
S.
,
2015
, “
Time-Resolved Spatial Patterns and Interactions of Soot, PAH and OH in a Turbulent Diffusion Flame
,”
Proc. Combust. Inst.
,
35
(
2
), pp.
1921
1929
.10.1016/j.proci.2014.06.123
34.
Geigle
,
K. P.
,
O'Loughlin
,
W.
,
Hadef
,
R.
, and
Meier
,
W.
,
2015
, “
Visualization of Soot Inception in Turbulent Pressurized Flames by Simultaneous Measurement of Laser-Induced Fluorescence of Polycyclic Aromatic Hydrocarbons and Laser-Induced Incandescence, and Correlation to OH Distributions
,”
Appl. Phys. B
,
119
(
4
), pp.
717
730
.10.1007/s00340-015-6075-3
35.
Guiberti
,
T.
,
2015
, “
Analysis of the Topology of Premixed Swirl-Stabilized Confined Flames
,”
Ph.D. thesis
,
École Centrale Paris, Gif-sur-Yvette
,
France
.https://theses.hal.science/tel-01154870/file/These_TGuiberti_2015.pdf
36.
Hadef
,
R.
,
Geigle
,
K. P.
,
Meier
,
W.
, and
Aigner
,
M.
,
2010
, “
Soot Characterization With Laser-Induced Incandescence Applied to a Laminar Premixed Ethylene-Air Flame
,”
Int. J. Therm. Sci.
,
49
(
8
), pp.
1457
1467
.10.1016/j.ijthermalsci.2010.02.014
You do not currently have access to this content.